Skip to main content

3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening

Abstract

2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3

References

  1. Abidin, F. Z., R. M. Gouveia, and C. J. Connon. Application of retinoic acid improves form and function of tissue engineered corneal construct. Organogenesis 11:122–136, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahn, S. H., M. Montero, D. Odell, S. Roundy, and P. K. Wright. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8:248–257, 2002.

    Article  Google Scholar 

  3. Alemany-Ribes, M., and C. E. Semino. Bioengineering 3D environments for cancer models. Adv. Drug Deliv. Rev. 79–80:40–49, 2014.

    Article  PubMed  Google Scholar 

  4. Almela, T., I. M. Brook, and K. Moharamzadeh. Development of three-dimensional tissue engineered bone-oral mucosal composite models. J. Mater. Sci. Mater. Med. 27:65, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andersen, M. E. Calling on science: making “Alternatives” the new gold standard. Altex-Altern. Anim. Exp. 27:135–143, 2010.

    Google Scholar 

  6. ASTM International. F2792-12a—Standard Terminology for Additive Manufacturing Technologies. Rapid Manuf. Assoc. pp. 10–12, 2013.

  7. Bandyopadhyay, A., S. Bose, and S. Das. 3D printing of biomaterials. MRS Bull. 40:108–115, 2015.

    CAS  Article  Google Scholar 

  8. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bian, W., D. Li, Q. Lian, X. Li, W. Zhang, K. Wang, and Z. Jin. Fabrication of a bio-inspired beta-Tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering. Rapid Prototyp. J. 18:68–80, 2012.

    Article  Google Scholar 

  10. Chang, R., K. Emami, H. Wu, and W. Sun. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2:045004, 2010.

    Article  PubMed  Google Scholar 

  11. Chang, R., J. Nam, and W. Sun. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. Part C. Methods 14:157–166, 2008.

    CAS  Article  PubMed  Google Scholar 

  12. Chung, T. W., J. Yang, T. Akaike, K. Y. Cho, J. W. Nah, S. Il Kim, and C. S. Cho. Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23:2827–2834, 2002.

    CAS  Article  PubMed  Google Scholar 

  13. Costa, P. F., C. Vaquette, J. Baldwin, M. Chhaya, M. E. Gomes, R. L. Reis, C. Theodoropoulos, and D. W. Hutmacher. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication 6:035006, 2014.

    Article  PubMed  Google Scholar 

  14. Crump, S. S. Apparatus and method for creating three-dimensional objects. US Patent 5121329 A, 1992.

  15. de Gans, B.-J., P. C. Duineveld, and U. S. Schubert. Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16:203–213, 2004.

    Article  Google Scholar 

  16. de Souza Carvalho, C., N. de Daum, and C. M. de Lehr. Carrier interactions with the biological barriers of the lung: Advanced in vitro models and challenges for pulmonary drug delivery. Adv. Drug Deliv. Rev. 75:129–140, 2014.

    Article  PubMed  Google Scholar 

  17. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.

    CAS  Article  PubMed  Google Scholar 

  18. Evans, H. J., J. K. Sweet, R. L. Price, M. Yost, and R. L. Goodwin. Novel 3D culture system for study of cardiac myocyte development. Am. J. Physiol. Heart Circ. Physiol. 285:H570–H578, 2003.

    CAS  Article  PubMed  Google Scholar 

  19. Fernández-Muiños, T., L. Recha-Sancho, P. López-Chicón, C. Castells-Sala, A. Mata, and C. E. Semino. Bimolecular based heparin and self-assembling hydrogel for tissue engineering applications. Acta Biomater. 16:35–48, 2015.

    Article  PubMed  Google Scholar 

  20. Fischbach, C., R. Chen, T. Matsumoto, T. Schmelzle, J. S. Brugge, P. J. Polverini, and D. J. Mooney. Engineering tumors with 3D scaffolds. Nat. Methods 4:855–860, 2007.

    CAS  Article  PubMed  Google Scholar 

  21. Fitzgerald, K. A., J. Guo, E. G. Tierney, C. M. Curtin, M. Malhotra, R. Darcy, F. J. O’Brien, and C. M. O’Driscoll. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials 66:53–66, 2015.

    CAS  Article  PubMed  Google Scholar 

  22. Fong, E. L. S., S.-E. Lamhamedi-Cherradi, E. Burdett, V. Ramamoorthy, A. J. Lazar, F. K. Kasper, M. C. Farach-Carson, D. Vishwamitra, E. G. Demicco, B. A. Menegaz, H. M. Amin, A. G. Mikos, and J. A. Ludwig. Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. Proc. Natl. Acad. Sci. USA. 110:6500–6505, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Frega, M., M. Tedesco, P. Massobrio, M. Pesce, and S. Martinoia. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in vitro electrophysiology. Sci. Rep. 4:1–14, 2014.

    Article  Google Scholar 

  24. Galantucci, L. M., F. Lavecchia, and G. Percoco. Experimental study aiming to enhance the surface finish of fused deposition modeled parts. CIRP Ann. Manuf. Technol. 58:189–192, 2009.

    Article  Google Scholar 

  25. Grayson, W. L., M. Fröhlich, K. Yeager, S. Bhumiratana, M. E. Chan, C. Cannizzaro, L. Q. Wan, X. S. Liu, X. E. Guo, and G. Vunjak-Novakovic. Engineering anatomically shaped human bone grafts. Proc. Natl. Acad. Sci. USA. 107:3299–3304, 2010.

    CAS  Article  PubMed  Google Scholar 

  26. Griffith, L. G., and G. Naughton. Tissue engineering-current challenges and expanding opportunities. Science 295:1009–1014, 2002.

    CAS  Article  PubMed  Google Scholar 

  27. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7:211–224, 2006.

    CAS  Article  PubMed  Google Scholar 

  28. Groeber, F., M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-Layland. Skin tissue engineering—in vivo and in vitro applications. Adv. Drug Deliv. Rev. 63:352–366, 2011.

    CAS  Article  PubMed  Google Scholar 

  29. Groll, J., T. Boland, T. Blunk, J. A. Burdick, D. Cho, D. Paul, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, and L. Moroni. Biofabrication: reappraising the definition in an evolving field. Biofabrication 8:013001, 2016.

    Article  PubMed  Google Scholar 

  30. Guelcher, S. A., A. Srinivasan, J. E. Dumas, J. E. Didier, S. McBride, and J. O. Hollinger. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 29:1762–1775, 2008.

    CAS  Article  PubMed  Google Scholar 

  31. Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B’09). Biofabrication 2:010201, 2010.

    Article  PubMed  Google Scholar 

  32. Guo, R., S. Lu, J. M. Page, A. R. Merkel, S. Basu, J. A. Sterling, and S. A. Guelcher. Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv. Healthc. Mater. 4:1826–1832, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Guo, R., A. R. Merkel, J. A. Sterling, J. M. Davidson, and S. A. Guelcher. Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling. Biomaterials 73:85–95, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Gurkan, U. A., R. El Assal, S. E. Yildiz, Y. Sung, A. J. Trachtenberg, W. P. Kuo, and U. Demirci. Engineering anisotropic biomimetic fibrocartilage microenvironment by bioprinting mesenchymal stem cells in nanoliter gel droplets. Mol. Pharm. 11:2151–2159, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gurski, L. A., N. J. Petrelli, X. Jia, and M. C. Farach-Carson. 3D matrices for anti-cancer drug testing and development. Oncol. Issues 25:20–25, 2010.

    Google Scholar 

  36. Hirschhaeuser, F., H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148:3–15, 2010.

    CAS  Article  PubMed  Google Scholar 

  37. Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4:518–524, 2005.

    CAS  Article  PubMed  Google Scholar 

  38. Horning, J. L., S. K. Sahoo, S. Vijayaraghavalu, S. Dimitrijevic, J. K. Vasir, T. K. Jain, A. K. Panda, and V. Labhasetwar. 3D tumor model for in vitro evaluation of anticancer drugs. Mol. Pharm. 5:849–862, 2008.

    CAS  Article  PubMed  Google Scholar 

  39. Horváth, L., Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, and B. Rothen-Rutishauser. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5:7974, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang, T. Q., X. Qu, J. Liu, and S. Chen. 3D printing of biomimetic microstructures for cancer cell migration. Biomed. Microdev. 16:127–132, 2014.

    Article  Google Scholar 

  41. Hull, C. W. Apparatus for production of three dimensional objects by stereolithography. US Patent 4575330 A, 1986.

  42. Hutmacher, D. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.

    CAS  Article  PubMed  Google Scholar 

  43. Hutmacher, D. W., T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55:203–216, 2001.

    CAS  Article  PubMed  Google Scholar 

  44. Jain, R. K., P. Au, J. Tam, D. G. Duda, and D. Fukumura. Engineering vascularized tissue. Nat. Biotechnol. 23:821–823, 2005.

    CAS  Article  PubMed  Google Scholar 

  45. Johnson, B., K. Lancaster, I. B. Hogue, F. Meng, Y. L. Kong, L. Enquist, and M. McAlpine. 3D printed nervous system on a chip. Lab Chip 16:1393–1400, 2016.

    CAS  Article  PubMed  Google Scholar 

  46. Kang, H. W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.

    CAS  Article  PubMed  Google Scholar 

  47. Khademhosseini, A., R. Langer, J. T. Borenstein, and J. P. Vacanti. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA. 103:2480–2487, 2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Kimlin, L., J. Kassis, and V. Virador. 3D in vitro tissue models and their potential for drug screening. Expert Opin. Drug Discov. 8:1455–1466, 2013.

    CAS  Article  PubMed  Google Scholar 

  49. Knowlton, S., S. Onal, C. H. Yu, J. J. Zhao, and S. Tasoglu. Bioprinting for cancer research. Trends Biotechnol. 33:1–10, 2015.

    Article  Google Scholar 

  50. Kock, L., C. C. van Donkelaar, and K. Ito. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 347:613–627, 2012.

    CAS  Article  PubMed  Google Scholar 

  51. Kolesky, D. B., R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26:3124–3130, 2014.

    CAS  Article  PubMed  Google Scholar 

  52. Kraus, D., V. Boyle, N. Leibig, G. Stark, and V. Penna. The Neuro-spheroid—A novel 3D in vitro model for peripheral nerve regeneration. J. Neurosci. Methods 246:97–105, 2015.

    CAS  Article  PubMed  Google Scholar 

  53. Kundu, J., J. H. Shim, J. Jang, S. W. Kim, and D. W. Cho. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 9:1286–1297, 2015.

    CAS  Article  PubMed  Google Scholar 

  54. LeCluyse, E. L., R. P. Witek, M. E. Andersen, and M. J. Powers. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit. Rev. Toxicol. 42:501–548, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Lee, W., J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park, and S. S. Yoo. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595, 2009.

    CAS  Article  PubMed  Google Scholar 

  56. Lozano, R., L. Stevens, B. C. Thompson, K. J. Gilmore, R. Gorkin, E. M. Stewart, M. in het Panhuis, M. Romero-Ortega, and G. G. Wallace. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273, 2015.

    CAS  Article  PubMed  Google Scholar 

  57. Macchiarini, P., P. Jungebluth, T. Go, M. A. Asnaghi, L. E. Rees, T. A. Cogan, A. Dodson, J. Martorell, S. Bellini, P. P. Parnigotto, S. C. Dickinson, A. P. Hollander, S. Mantero, M. T. Conconi, and M. A. Birchall. Clinical transplantation of a tissue-engineered airway. Lancet 372:2023–2030, 2008.

    Article  PubMed  Google Scholar 

  58. Malda, J., T. B. F. Woodfield, F. van der Vloodt, C. Wilson, D. E. Martens, J. Tramper, C. A. van Blitterswijk, and J. Riesle. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26:63–72, 2005.

    CAS  Article  PubMed  Google Scholar 

  59. Mastro, A. M., and E. A. Vogler. A three-dimensional osteogenic tissue model for the study of metastatic tumor cell interactions with bone. Cancer Res. 69:4097–4100, 2009.

    CAS  Article  PubMed  Google Scholar 

  60. Melchels, F. P. W., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.

    CAS  Article  PubMed  Google Scholar 

  61. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Moreira-Teixeira, L. S., N. Georgi, J. Leijten, L. Wu, and M. Karperien. Cartilage tissue engineering. Endocr. Dev. 21:102–115, 2011.

    CAS  PubMed  Google Scholar 

  63. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    CAS  Article  PubMed  Google Scholar 

  64. Neiman, J. A. S., R. Raman, V. Chan, M. G. Rhoads, M. S. B. Raredon, J. J. Velazquez, R. L. Dyer, R. Bashir, P. T. Hammond, and L. G. Griffith. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol. Bioeng. 112:777–787, 2015.

    CAS  Article  PubMed  Google Scholar 

  65. Olson, H., G. Betton, D. Robinson, K. Thomas, A. Monro, G. Kolaja, P. Lilly, J. Sanders, G. Sipes, W. Bracken, M. Dorato, K. Van Deun, P. Smith, B. Berger, and A. Heller. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32:56–67, 2000.

    CAS  Article  PubMed  Google Scholar 

  66. Pati, F., J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun 5:3935, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Pedron, S., E. Becka, and B. A. Harley. Spatially gradated hydrogel platform as a 3D engineered tumor microenvironment. Adv. Mater. 27:1567–1572, 2015.

    CAS  Article  PubMed  Google Scholar 

  68. Ramaiahgari, S. C., M. W. Den Braver, B. Herpers, V. Terpstra, J. N. M. Commandeur, B. Van De Water, and L. S. Price. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch. Toxicol. 88:1083–1095, 2014.

    CAS  PubMed  Google Scholar 

  69. Raman, R., B. Bhaduri, M. Mir, A. Shkumatov, M. K. Lee, G. Popescu, H. Kong, and R. Bashir. High-resolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 2015. doi:10.1002/adhm.201500721.

    PubMed  Google Scholar 

  70. Rimann, M., E. Bono, H. Annaheim, M. Bleisch, and U. Graf-Hausner. Standardized 3D bioprinting of soft tissue models with human primary cells. J. Lab. Autom. 2015. doi:10.1177/2211068214567146.

    Google Scholar 

  71. Rizvi, I., J. P. Celli, C. L. Evans, A. O. Abu-Yousif, A. Muzikansky, B. W. Pogue, D. Finkelstein, and T. Hasan. Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res. 70:9319–9328, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Ruppender, N. S., A. R. Merkel, T. J. Martin, G. R. Mundy, J. A. Sterling, and S. A. Guelcher. Matrix rigidity induces osteolytic gene expression of metastatic breast cancer cells. PLoS One 5:1–10, 2010.

    Article  Google Scholar 

  73. Sanz-Herrera, J. A., P. Moreo, J. M. García-Aznar, and M. Doblaré. On the effect of substrate curvature on cell mechanics. Biomaterials 30:6674–6686, 2009.

    CAS  Article  PubMed  Google Scholar 

  74. Sarkar, U., D. Rivera-Burgos, E. M. Large, D. J. Hughes, K. C. Ravindra, R. L. Dyer, M. R. Ebrahimkhani, J. S. Wishnok, L. G. Griffith, and S. R. Tannenbaum. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab. Dispos. 43:1091–1099, 2015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Schuessler, T. K., X. Y. Chan, H. J. Chen, K. Ji, K. M. Park, A. Roshan-Ghias, P. Sethi, A. Thakur, X. Tian, A. Villasante, I. K. Zervantonakis, N. M. Moore, L. A. Nagahara, and N. Z. Kuhn. Biomimetic tissue-engineered systems for advancing cancer research: NCI strategic workshop report. Cancer Res. 74:5359–5363, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Smith, K. E., S. L. Hyzy, M. Sunwoo, K. A. Gall, Z. Schwartz, and B. D. Boyan. The dependence of MG63 osteoblast responses to (meth)acrylate-based networks on chemical structure and stiffness. Biomaterials 31:6131–6141, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Snyder, J. E., Q. Hamid, C. Wang, R. Chang, K. Emami, H. Wu, and W. Sun. Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3:034112, 2011.

    CAS  Article  PubMed  Google Scholar 

  78. Soman, P., J. A. Kelber, J. W. Lee, T. N. Wright, K. S. Vecchio, R. L. Klemke, and S. Chen. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials 33:7064–7070, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Sun, C., N. Fang, D. M. Wu, and X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A Phys. 121:113–120, 2005.

    CAS  Article  Google Scholar 

  80. Sun, T., S. Jackson, J. W. Haycock, and S. MacNeil. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J. Biotechnol. 122:372–381, 2006.

    CAS  Article  PubMed  Google Scholar 

  81. Tasoglu, S., and U. Demirci. Bioprinting for stem cell research. Trends Biotechnol 31:10–19, 2013.

    CAS  Article  PubMed  Google Scholar 

  82. Taylor, M. P., O. Kobiler, and L. W. Enquist. Alphaherpesvirus axon-to-cell spread involves limited virion transmission. Proc. Natl. Acad. Sci. USA. 109:17046–17051, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Temple, J. P., D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, and W. L. Grayson. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. Part A 102:4317–4325, 2014.

    Google Scholar 

  84. Van Bael, S., Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J. P. Kruth, and J. Schrooten. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4 V bone scaffolds. Acta Biomater. 8:2824–2834, 2012.

    Article  PubMed  Google Scholar 

  85. Vörsmann, H., F. Groeber, H. Walles, S. Busch, S. Beissert, H. Walczak, and D. Kulms. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Cell Death Dis. 4:e719, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Xu, F., J. Celli, I. Rizvi, S. Moon, T. Hasan, and U. Demirci. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6:204–212, 2011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Yamada, K. M., and E. Cukierman. Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610, 2007.

    CAS  Article  PubMed  Google Scholar 

  88. Zadpoor, A. A. Bone tissue regeneration: the role of scaffold geometry. Biomater. Sci. 3:231–245, 2015.

    CAS  Article  PubMed  Google Scholar 

  89. Zanotelli, M. R., H. Ardalani, J. Zhang, Z. Hou, E. H. Nguyen, S. Swanson, B. K. Nguyen, J. Bolin, A. Elwell, L. L. Bischel, A. W. Xie, R. Stewart, D. J. Beebe, J. A. Thomson, M. P. Schwartz, and W. L. Murphy. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomater. 35:32–41, 2016.

    CAS  Article  PubMed  Google Scholar 

  90. Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185, 2002.

    CAS  Article  PubMed  Google Scholar 

  91. Zhang, D., M. Pekkanen-Mattila, M. Shahsavani, A. Falk, A. I. Teixeira, and A. Herland. A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35:1420–1428, 2014.

    CAS  Article  PubMed  Google Scholar 

  92. Zhao, Y., R. Yao, L. Ouyang, H. Ding, T. Zhang, K. Zhang, S. Cheng, and W. Sun. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported in part by the National Cancer Institute of the National Institutes of Health under award number R01CA163499. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Guelcher.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanderburgh, J., Sterling, J.A. & Guelcher, S.A. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening. Ann Biomed Eng 45, 164–179 (2017). https://doi.org/10.1007/s10439-016-1640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1640-4

Keywords

  • Additive Manufacturing
  • 3D printing
  • Bioprinting
  • Drug screening
  • Tissue engineered constructs