Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 2090–2102 | Cite as

Advanced Bioinks for 3D Printing: A Materials Science Perspective

  • David Chimene
  • Kimberly K. Lennox
  • Roland R. Kaunas
  • Akhilesh K. GaharwarEmail author
Emerging Trends in Biomaterials Research


Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the “biofabrication window”. While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.


3D printing Bioinks Hydrogels Interpenetrating networks (IPNs) Nanomaterials Supramolecular 



This research was supported by the National Science Foundation Award No. HRD-1406755 and CBET-1264848 and NIH R01 AR066033-01.


  1. 1.
    Augst, A. D., H. J. Kong, and D. J. Mooney. Alginate hydrogels as biomaterials. Macromol. Biosci. 6:623–633, 2006.CrossRefPubMedGoogle Scholar
  2. 2.
    Azagarsamy, M. A., and K. S. Anseth. Bioorthogonal click chemistry: an indispensable tool to create multifaceted cell culture scaffolds. ACS Macro Lett. 2:5–9, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bakarich, S. E., R. Gorkin, M. I. H. Panhuis, and G. M. Spinks. 4D printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36:1211–1217, 2015.CrossRefPubMedGoogle Scholar
  4. 4.
    Bertassoni, L. E., J. C. Cardoso, V. Manoharan, A. L. Cristino, N. S. Bhise, W. A. Araujo, P. Zorlutuna, N. E. Vrana, A. M. Ghaemmaghami, and M. R. Dokmeci. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6:024105, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, and Y. Yang. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bhattacharjee, T., S. M. Zehnder, K. G. Rowe, S. Jain, R. M. Nixon, W. G. Sawyer, and T. E. Angelini. Writing in the granular gel medium. Sci. Adv. 1:e1500655, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Carrow, J. K., and A. K. Gaharwar. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys. 216:248–264, 2015.CrossRefGoogle Scholar
  9. 9.
    Chen, Q., H. Chen, L. Zhu, and J. Zheng. Fundamentals of double network hydrogels. J Mater Chem B 3:3654–3676, 2015.CrossRefGoogle Scholar
  10. 10.
    Chen, Q., L. Zhu, L. Huang, H. Chen, K. Xu, Y. Tan, P. Wang, and J. Zheng. Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 47:2140–2148, 2014.CrossRefGoogle Scholar
  11. 11.
    Chimene, D., D. L. Alge, and A. K. Gaharwar. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 27:7261–7284, 2015.CrossRefPubMedGoogle Scholar
  12. 12.
    Chung, J. H., S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S. E. Moulton, and G. G. Wallace. Bio-ink properties and printability for extrusion printing living cells. Biomater. Sci. 1:763–773, 2013.CrossRefGoogle Scholar
  13. 13.
    Discher, D. E., D. J. Mooney, and P. W. Zandstra. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Durmus, N. G., S. Tasoglu, and U. Demirci. Bioprinting: functional droplet networks. Nat. Mater. 12:478–479, 2013.CrossRefPubMedGoogle Scholar
  16. 16.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  17. 17.
    Fisher, O. Z., A. Khademhosseini, R. Langer, and N. A. Peppas. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43:419–428, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gaharwar, A. K., A. Arpanaei, T. L. Andresen, and A. Dolatshahi-Pirouz. 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv. Mater. 28:771–781, 2016.CrossRefPubMedGoogle Scholar
  19. 19.
    Gaharwar, A. K., R. K. Avery, A. Assmann, A. Paul, G. H. McKinley, A. Khademhosseini, and B. D. Olsen. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gaharwar, A. K., N. A. Peppas, and A. Khademhosseini. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 111:441–453, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gaharwar, A. K., C. P. Rivera, C.-J. Wu, and G. Schmidt. Transparent, elastomeric and tough hydrogels from poly (ethylene glycol) and silicate nanoparticles. Acta Biomater. 7:4139–4148, 2011.CrossRefPubMedGoogle Scholar
  22. 22.
    Gao, G., A. F. Schilling, T. Yonezawa, J. Wang, G. Dai, and X. Cui. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol. J. 9:1304–1311, 2014.CrossRefPubMedGoogle Scholar
  23. 23.
    Gasperini, L., J. F. Mano, and R. L. Reis. Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11:20140817, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goenka, S., V. Sant, and S. Sant. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173:75–88, 2014.CrossRefPubMedGoogle Scholar
  25. 25.
    Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Haque, M. A., T. Kurokawa, and J. P. Gong. Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822, 2012.CrossRefGoogle Scholar
  27. 27.
    Hart, L. R., J. L. Harries, B. W. Greenland, H. M. Colquhoun, and W. Hayes. Healable supramolecular polymers. Polymer Chemistry 4:4860–4870, 2013.CrossRefGoogle Scholar
  28. 28.
    Highley, C. B., C. B. Rodell, and J. A. Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 27:5075–5079, 2015.CrossRefPubMedGoogle Scholar
  29. 29.
    Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23, 2012.CrossRefGoogle Scholar
  31. 31.
    Hong, S., D. Sycks, H. F. Chan, S. Lin, G. P. Lopez, F. Guilak, K. W. Leong, and X. Zhao. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27:4035–4040, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huang, T., H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19:1622–1626, 2007.CrossRefGoogle Scholar
  33. 33.
    Jaiswal, M. K., J. R. Xavier, J. K. Carrow, P. Desai, D. Alge, and A. K. Gaharwar. Mechanically stiff nanocomposite hydrogels at ultralow nanoparticle content. ACS Nano 10:246–256, 2016.CrossRefPubMedGoogle Scholar
  34. 34.
    Jakab, K., C. Norotte, F. Marga, K. Murphy, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34:312–319, 2016.CrossRefPubMedGoogle Scholar
  36. 36.
    Kerativitayanan, P., J. K. Carrow, and A. K. Gaharwar. Nanomaterials for engineering stem cell responses. Adv. Healthc Mater. 4:1600–1627, 2015.CrossRefPubMedGoogle Scholar
  37. 37.
    Kesti, M., M. Müller, J. Becher, M. Schnabelrauch, M. D’Este, D. Eglin, and M. Zenobi-Wong. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater. 11:162–172, 2015.CrossRefPubMedGoogle Scholar
  38. 38.
    Kirchmajer, D. M., R. Gorkin, III, and M. I. H. Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chem. B 3:4105–4117, 2015.CrossRefGoogle Scholar
  39. 39.
    Kirchmajer, D. M., and M. I. H. Panhuis. Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour. J. Mater. Chem. B 2:4694–4702, 2014.CrossRefGoogle Scholar
  40. 40.
    Kloxin, A. M., C. J. Kloxin, C. N. Bowman, and K. S. Anseth. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22:3484–3494, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee, V. K., D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, P. A. Vincent, and G. Dai. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35:8092–8102, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lee, V., G. Singh, J. P. Trasatti, C. Bjornsson, X. Xu, T. N. Tran, S.-S. Yoo, G. Dai, and P. Karande. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. Part C Methods 20:473–484, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Malda, J., and J. Groll. A step towards clinical translation of biofabrication. Trends Biotechnol. 34:356, 2016.CrossRefPubMedGoogle Scholar
  44. 44.
    Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. Dhert, J. Groll, and D. W. Hutmacher. 25th anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.CrossRefPubMedGoogle Scholar
  45. 45.
    Markstedt, K., A. Mantas, I. Tournier, H. C. Martínez Ávila, D. Hägg, and P. Gatenholm. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.CrossRefPubMedGoogle Scholar
  46. 46.
    Melchels, F. P., M. A. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37:1079–1104, 2012.CrossRefGoogle Scholar
  47. 47.
    Mironov, V., N. Reis, and B. Derby. Review: bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.CrossRefPubMedGoogle Scholar
  48. 48.
    Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.CrossRefPubMedGoogle Scholar
  50. 50.
    Murphy, S. V., A. Skardal, and A. Atala. Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101A:272–284, 2013.CrossRefGoogle Scholar
  51. 51.
    Parani, M., G. Lokhande, A. Singh, and A. K. Gaharwar. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces 8:10049–10069, 2016.CrossRefPubMedGoogle Scholar
  52. 52.
    Pati, F., J. Gantelius, and H. A. Svahn. 3D bioprinting of tissue/organ models. Angew. Chem. Int. Ed. 55:4650–4665, 2016.CrossRefGoogle Scholar
  53. 53.
    Pati, F., J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Paul, A. Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine 10:1371–1374, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Peak, C. W., J. K. Carrow, A. Thakur, A. Singh, and A. K. Gaharwar. Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell. Mol. Bioeng. 8:404–415, 2015.CrossRefGoogle Scholar
  56. 56.
    Pereira, R. F., H. A. Almeida, and P. J. Bártolo. Drug delivery systems: advanced technologies potentially applicable in personalised treatmentBiofabrication Hydrogel Constr., Dordrecht: Springer, pp. 225–254, 2013.CrossRefGoogle Scholar
  57. 57.
    Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53, 1999.CrossRefPubMedGoogle Scholar
  58. 58.
    Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, Cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Skardal, A., and A. Atala. Biomaterials for Integration with 3-D Bioprinting. Ann. Biomed. Eng. 43:730–746, 2015.CrossRefPubMedGoogle Scholar
  60. 60.
    Slaughter, B. V., S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas. Hydrogels in regenerative medicine. Adv. Mater. 21:3307–3329, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stanton, M., J. Samitier, and S. Sánchez. Bioprinting of 3D hydrogels. Lab Chip 15:3111–3115, 2015.CrossRefPubMedGoogle Scholar
  62. 62.
    Suekama, T. C., J. Hu, T. Kurokawa, J. P. Gong, and S. H. Gehrke. Double-network strategy improves fracture properties of chondroitin sulfate networks. ACS Macro Lett. 2:137–140, 2013.CrossRefGoogle Scholar
  63. 63.
    Thakur, T., J. R. Xavier, L. Cross, M. K. Jaiswal, E. Mondragon, R. Kaunas, and A. K. Gaharwar. Photocrosslinkable and elastomeric hydrogels for bone regeneration. J Biomed Mater Res A 104:879–888, 2016.CrossRefPubMedGoogle Scholar
  64. 64.
    Thiele, J., Y. Ma, S. Bruekers, S. Ma, and W. T. Huck. 25th Anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26:125–148, 2014.CrossRefPubMedGoogle Scholar
  65. 65.
    Tibbitt, M. W., and K. S. Anseth. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103:655–663, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xavier, J. R., T. Thakur, P. Desai, M. K. Jaiswal, N. Sears, E. Cosgriff-Hernandez, R. Kaunas, and A. K. Gaharwar. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9:3109–3118, 2015.CrossRefPubMedGoogle Scholar
  67. 67.
    Xu, Y., and X. Wang. Application of 3D biomimetic models in drug delivery and regenerative medicine. Curr. Pharm. Des. 21:1618–1626, 2015.CrossRefPubMedGoogle Scholar
  68. 68.
    Yang, L., X. Tan, Z. Wang, and X. Zhang. Supramolecular polymers: historical development, preparation, characterization, and functions. Chem. Rev. 115:7196–7239, 2015.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhu, W., X. Ma, M. Gou, D. Mei, K. Zhang, and S. Chen. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40:103–112, 2016.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • David Chimene
    • 1
  • Kimberly K. Lennox
    • 1
  • Roland R. Kaunas
    • 1
  • Akhilesh K. Gaharwar
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Center for Remote Health Technologies and SystemsTexas A&M UniversityCollege StationUSA

Personalised recommendations