Annals of Biomedical Engineering

, Volume 44, Issue 10, pp 2901–2910 | Cite as

Males have Inferior Achilles Tendon Material Properties Compared to Females in a Rodent Model

  • A. M. Pardes
  • B. R. Freedman
  • G. W. Fryhofer
  • N. S. Salka
  • P. R. Bhatt
  • L. J. SoslowskyEmail author


The Achilles tendon is the most commonly ruptured tendon in the human body. Numerous studies have reported incidence of these injuries to be upwards of five times as common in men than women. Therefore, the objective of this study was to investigate the sex- and hormone-specific differences between Achilles tendon and muscle between female, ovariectomized female (ovarian hormone deficient), and male rats. Uninjured tissues were collected from all groups for mechanical, structural, and histological analysis. Our results showed that while cross-sectional area and failure load were increased in male tendons, female tendons exhibited superior tendon material properties and decreased muscle fiber size. Specifically, linear and dynamic moduli were increased while viscoelastic properties (e.g., hysteresis, percent relaxation) were decreased in female tendons, suggesting greater resistance to deformation under load and more efficient energy transfer, respectively. No differences were identified in tendon organization, cell shape, cellularity, or proteoglycan content. Additionally, no differences in muscle fiber type distribution were observed between groups. In conclusion, inferior tendon mechanical properties and increased muscle fiber size may explain the increased susceptibility for Achilles tendon injury observed clinically in men compared to women.


Mechanics Injury Fatigue Gender Ankle Orthopaedics 



This study was funded by NIH/NIAMS R01AR064216S1, the NIH/NIAMS supported Penn Center for Musculoskeletal Disorders (P30 AR050950), the NIH/NCATS (TL1TR000138), the NIH/NIAMS T32AR007132, and NSF GRFP. The authors thank Dan Choi and Cori Riggin for their contributions.

Author contributions

All authors were fully involved in the study and preparation of the manuscript. The manuscript has been read and approved by all of the authors.


  1. 1.
    Archambault, J. M., S. A. Jelinsky, S. P. Lake, A. A. Hill, D. L. Glaser, and L. J. Soslowsky. Rat supraspinatus tendon expresses cartilage markers with overuse. J. Orthop. Res. 25:617–624, 2007.CrossRefPubMedGoogle Scholar
  2. 2.
    Bridgeman, J. T., Y. Zhang, H. Donahue, A. M. Wade, and P. J. Juliano. Estrogen receptor expression in posterior tibial tendon dysfunction: a pilot study. Foot Ankle Int. 31:1081–1084, 2010.CrossRefPubMedGoogle Scholar
  3. 3.
    Bryant, A. L., R. A. Clark, S. Bartold, A. Murphy, K. L. Bennell, E. Hohmann, S. Marshall-Gradisnik, C. Payne, and K. M. Crossley. Effects of estrogen on the mechanical behavior of the human Achilles tendon in vivo. J. Appl. Physiol. 105(1035–1043):2008, 1985.Google Scholar
  4. 4.
    Chamberlain, C. S., S. E. Duenwald-Kuehl, G. Okotie, S. H. Brounts, G. S. Baer, and R. Vanderby. Temporal healing in rat achilles tendon: ultrasound correlations. Ann. Biomed. Eng. 41:477–487, 2013.CrossRefPubMedGoogle Scholar
  5. 5.
    Favata, M. Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair. Bioengineering, Philadelphia: University of Pennsylvania, 2006.Google Scholar
  6. 6.
    Fisher, J. S., W. M. Kohrt, and M. Brown. Food restriction suppresses muscle growth and augments osteopenia in ovariectomized rats. J. Appl. Physiol. 88(265–271):2000, 1985.Google Scholar
  7. 7.
    Freedman, B. R., J. A. Gordon, P. B. Bhatt, A. M. Pardes, S. J. Thomas, J. J. Sarver, C. N. Riggin, J. J. Tucker, A. W. Williams, R. C. Zanes, M. W. Hast, D. C. Farber, K. G. Silbernagel, and L. J. Soslowsky. Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model. J. Orthop. Res. 2016. doi: 10.1002/jor.23253.PubMedCentralGoogle Scholar
  8. 8.
    Freedman, B. R., J. A. Gordon, and L. J. Soslowsky. The Achilles tendon: fundamental properties and mechanisms governing healing. Muscles Ligaments Tendons J. 4:245–255, 2014.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Freedman, B. R., A. Zuskov, J. J. Sarver, M. R. Buckley, and L. J. Soslowsky. Evaluating changes in tendon crimp with fatigue loading as an ex vivo structural assessment of tendon damage. J. Orthop. Res. 33:904–910, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huttunen, T. T., P. Kannus, C. Rolf, L. Fellander-Tsai, and V. M. Mattila. Acute achilles tendon ruptures: incidence of injury and surgery in Sweden between 2001 and 2012. Am. J. Sports Med. 42:2419–2423, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Kobori, M., and T. Yamamuro. Effects of gonadectomy and estrogen administration on rat skeletal muscle. Clin. Orthop. Relat. Res. 243:306–311, 1989.Google Scholar
  12. 12.
    Lake, S. P., K. S. Miller, D. M. Elliott, and L. J. Soslowsky. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 27:1596–1602, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lambers, F. M., G. Kuhn, F. A. Schulte, K. Koch, and R. Muller. Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis. Calcif. Tissue Int. 90:108–119, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Lantto, I., J. Heikkinen, T. Flinkkila, P. Ohtonen, and J. Leppilahti. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand. J. Med. Sci. Sports 25:e133–e138, 2015.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu, S. H., R. al-Shaikh, V. Panossian, R. S. Yang, S. D. Nelson, N. Soleiman, G. A. Finerman, and J. M. Lane. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J. Orthop. Res. 14:526–533, 1996.CrossRefPubMedGoogle Scholar
  16. 16.
    Maffulli, N., S. W. Waterston, J. Squair, J. Reaper, and A. S. Douglas. Changing incidence of Achilles tendon rupture in Scotland: a 15-year study. Clin. J. Sport Med. 9:157–160, 1999.CrossRefPubMedGoogle Scholar
  17. 17.
    McCormick, K. M., K. L. Burns, C. M. Piccone, L. E. Gosselin, and G. A. Brazeau. Effects of ovariectomy and estrogen on skeletal muscle function in growing rats. J. Muscle Res. Cell Motil. 25:21–27, 2004.CrossRefPubMedGoogle Scholar
  18. 18.
    Murshed, K. A., A. E. Cicekcibasi, A. Karabacakoglu, M. Seker, and T. Ziylan. Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg. Radiol. Anat. 27:108–112, 2005.CrossRefPubMedGoogle Scholar
  19. 19.
    Riggin, C. N., J. J. Sarver, B. R. Freedman, S. J. Thomas, and L. J. Soslowsky. Analysis of collagen organization in mouse achilles tendon using high-frequency ultrasound imaging. J. Biomech. Eng. 136:021029, 2014.CrossRefPubMedGoogle Scholar
  20. 20.
    Romani, W. A., and D. W. Russ. Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur. J. Appl. Physiol. 113:2503–2510, 2013.CrossRefPubMedGoogle Scholar
  21. 21.
    Smith, L. R., and E. R. Barton. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application. Skelet. Muscle 4:21, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Soslowsky, L. J., S. Thomopoulos, S. Tun, C. L. Flanagan, C. C. Keefer, J. Mastaw, J. E. Carpenter, and Neer Award. Overuse activity injures the supraspinatus tendon in an animal model: a histologic and biomechanical study. J. Shoulder Elbow Surg. 9(79–84):2000, 1999.Google Scholar
  23. 23.
    Torricelli, P., F. Veronesi, S. Pagani, N. Maffulli, S. Masiero, A. Frizziero, and M. Fini. In vitro tenocyte metabolism in aging and oestrogen deficiency. Age (Dordr) 35:2125–2136, 2013.CrossRefGoogle Scholar
  24. 24.
    van Wessel, T., A. de Haan, W. J. van der Laarse, and R. T. Jaspers. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur. J. Appl. Physiol. 110:665–694, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vosseller, J. T., S. J. Ellis, D. S. Levine, J. G. Kennedy, A. J. Elliott, J. T. Deland, M. M. Roberts, and M. J. O’Malley. Achilles tendon rupture in women. Foot Ankle Int. 34:49–53, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Wentorf, F. A., K. Sudoh, C. Moses, E. A. Arendt, and C. S. Carlson. The effects of estrogen on material and mechanical properties of the intra- and extra-articular knee structures. Am. J. Sports Med. 34:1948–1952, 2006.CrossRefPubMedGoogle Scholar
  27. 27.
    White, J. J., A. G. Titchener, A. Fakis, A. A. Tambe, R. B. Hubbard, and D. I. Clark. An epidemiological study of rotator cuff pathology using The Health Improvement Network database. Bone Joint J 96-B:350–353, 2014.CrossRefPubMedGoogle Scholar
  28. 28.
    Wojtys, E. M., L. J. Huston, M. D. Boynton, K. P. Spindler, and T. N. Lindenfeld. The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. Am. J. Sports Med. 30:182–188, 2002.CrossRefPubMedGoogle Scholar
  29. 29.
    Wojtys, E. M., L. J. Huston, T. N. Lindenfeld, T. E. Hewett, and M. L. Greenfield. Association between the menstrual cycle and anterior cruciate ligament injuries in female athletes. Am. J. Sports Med. 26:614–619, 1998.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu, W. D., V. Panossian, J. D. Hatch, S. H. Liu, and G. A. Finerman. Combined effects of estrogen and progesterone on the anterior cruciate ligament. Clin. Orthop. Relat. Res. 383:268–281, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • A. M. Pardes
    • 1
  • B. R. Freedman
    • 1
  • G. W. Fryhofer
    • 1
  • N. S. Salka
    • 1
  • P. R. Bhatt
    • 1
  • L. J. Soslowsky
    • 1
    Email author
  1. 1.McKay Orthopaedic LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations