Annals of Biomedical Engineering

, Volume 45, Issue 1, pp 273–285 | Cite as

Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication

  • Simone Stichler
  • Tomasz Jungst
  • Martha Schamel
  • Ilona Zilkowski
  • Matthias Kuhlmann
  • Thomas Böck
  • Torsten Blunk
  • Jörg Teßmar
  • Jürgen GrollEmail author
Additive Manufacturing of Biomaterials, Tissues, and Organs


In this study we introduce linear poly(glycidol) (PG), a structural analog of poly(ethylene glycol) bearing side chains at each repeating unit, as polymer basis for bioink development. We prepare allyl- and thiol-functional linear PG that can rapidly be polymerized to a three-dimensionally cross-linked hydrogel network via UV mediated thiol-ene click reaction. Influence of polymer concentration and UV irradiation on mechanical properties and swelling behavior was examined. Thiol-functional PG was synthesized in two structural variations, one containing ester groups that are susceptible to hydrolytic cleavage, and the other one ester-free and stable against hydrolysis. This allowed the preparation of degradable and non-degradable hydrogels. Cytocompatibility of the hydrogel was demonstrated by encapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Rheological properties of the hydrogels were adjusted for dispense plotting by addition of high molecular weight hyaluronic acid. The optimized formulation enabled highly reproducible plotting of constructs composed of 20 layers with an overall height of 3.90 mm.


Bioink Bioprinting Dispense plotting Poly(glycidol) Hyaluronic acid 



The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement n° 309962 (Project HydroZONES) and from the Interdisciplinary Center for Clinical Research Würzburg (Project Number D-219).

Supplementary material

10439_2016_1633_MOESM1_ESM.docx (1001 kb)
Supplementary material 1 (DOCX 1001 kb)

Supplementary material 2 (MP4 11037 kb)

Supplementary material 3 (MP4 12577 kb)


  1. 1.
    Akhtar, R., M. J. Sherratt, J. K. Cruickshank, and B. Derby. Characterizing the elastic properties of tissues. Mater. Today 14:96–105, 2011.CrossRefGoogle Scholar
  2. 2.
    Allison, D. D., and K. J. Grande-Allen. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 12:2131–2140, 2006.CrossRefPubMedGoogle Scholar
  3. 3.
    Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.CrossRefPubMedGoogle Scholar
  4. 4.
    Bryant, S. J., T. T. Chowdhury, D. A. Lee, D. L. Bader, and K. S. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.CrossRefPubMedGoogle Scholar
  5. 5.
    Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Dworak, A., S. Slomkowski, T. Basinska, M. Gosecka, W. Walach, and B. Trzebicka. Polyglycidol—how is it synthesized and what is it used for? Polimery 58:641–649, 2013.CrossRefGoogle Scholar
  7. 7.
    Erberich, M., H. Keul, and M. Moeller. Polyglycidols with two orthogonal protective groups: preparation, selective deprotection, and functionalization. Macromolecules 40:3070–3079, 2007.CrossRefGoogle Scholar
  8. 8.
    Fitton, A. O., J. Hill, D. E. Jane, and R. Millar. Synthesis of simple oxetanes carrying reactive 2-substituents. Synthesis 1140–1142:1987, 1987.Google Scholar
  9. 9.
    Gramlich, W. M., I. L. Kim, and J. A. Burdick. Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34:9803–9811, 2013.CrossRefPubMedGoogle Scholar
  10. 10.
    Groll, J., T. Boland, T. Blunk, J. A. Burdick, D. W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, L. Moroni, M. Nakamura, W. Shu, S. Takeuchi, G. Vozzi, T. B. F. Woodfield, T. Xu, J. J. Yoo, and J. Malda. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001, 2016.CrossRefPubMedGoogle Scholar
  11. 11.
    Groll, J., S. Singh, K. Albrecht, and M. Moeller. Biocompatible and degradable nanogels via oxidation reactions of synthetic thiomers in inverse miniemulsion. J. Polym. Sci. A Polym. Chem. 47:5543–5549, 2009.CrossRefGoogle Scholar
  12. 12.
    Imran ul-haq, M., B. F. L. Lai, R. Chapanian, and J. N. Kizhakkedathu. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution. Biomaterials 33:9135–9147, 2012.CrossRefPubMedGoogle Scholar
  13. 13.
    Jungst, T., W. Smolan, K. Schacht, T. Scheibel, and J. Groll. Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 2016. doi: 10.1021/acs.chemrev.5b00303.PubMedGoogle Scholar
  14. 14.
    Kainthan, R. K., J. Janzen, E. Levin, D. V. Devine, and D. E. Brooks. Biocompatibility testing of branched and linear polyglycidol. Biomacromolecules 7:703–709, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Klein, T. J., S. C. Rizzi, J. C. Reichert, N. Georgi, J. Malda, W. Schuurman, R. W. Crawford, and D. W. Hutmacher. Strategies for zonal cartilage repair using hydrogels. Macromol. Biosci. 9:1049–1058, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuhlmann, M., and J. Groll. Dispersity control of linear poly(glycidyl ether)s by slow monomer addition. RSC Adv. 5:67323–67326, 2015.CrossRefGoogle Scholar
  17. 17.
    Levett, P. A., D. W. Hutmacher, J. Malda, and T. J. Klein. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS One 9:e113216, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Malda, J., J. Visser, F. P. Melchels, T. Jüngst, W. E. Hennink, W. J. A. Dhert, J. Groll, and D. W. Hutmacher. 25th Anniversary article: engineering hydrogels for biofabrication. Adv. Mater. 25:5011–5028, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Melchels, F. P. W., M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37:1079–1104, 2012.CrossRefGoogle Scholar
  20. 20.
    Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotech. 32:773–785, 2014.CrossRefGoogle Scholar
  21. 21.
    Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Owen, S. C., S. A. Fisher, R. Y. Tam, C. M. Nimmo, and M. S. Shoichet. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir 29:7393–7400, 2013.CrossRefPubMedGoogle Scholar
  23. 23.
    Pereira, R. F., and P. J. Bártolo. 3D Photo-fabrication for tissue engineering and drug delivery. Engineering 1:90–112, 2015.CrossRefGoogle Scholar
  24. 24.
    Pereira, R. F., and P. J. Bártolo. 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci. 132:42458, 2015.CrossRefGoogle Scholar
  25. 25.
    Pescosolido, L., W. Schuurman, J. Malda, P. Matricardi, F. Alhaique, T. Coviello, P. R. van Weeren, W. J. A. Dhert, W. E. Hennink, and T. Vermonden. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 12:1831–1838, 2011.CrossRefPubMedGoogle Scholar
  26. 26.
    Robert, J. J., and S. J. Bryant. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials 34:9969–9979, 2013.CrossRefGoogle Scholar
  27. 27.
    Schacht, K., T. Jungst, M. Schweinlin, A. Ewald, J. Groll, and T. Scheibel. Biofabrication of cell-loaded 3D spider silk constructs. Angew. Chem. Int. Ed. 54:1–6, 2015.CrossRefGoogle Scholar
  28. 28.
    Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 7:676–682, 2012.CrossRefGoogle Scholar
  29. 29.
    Schuurman, W., P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. A. Dhert, D. W. Hutmacher, F. P. W. Melchels, T. J. Klein, and J. Malda. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13:551–561, 2013.CrossRefPubMedGoogle Scholar
  30. 30.
    Singh, S., F. Topuz, K. Hahn, K. Albrecht, and J. Groll. Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew. Chem. Int. Ed. 52:3000–3003, 2013.CrossRefGoogle Scholar
  31. 31.
    Skardal, A., J. Zhang, L. McCoard, X. Xu, S. Oottamasathien, and G. D. Prestwich. Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng. A 16:2675–2685, 2010.CrossRefGoogle Scholar
  32. 32.
    Thomas, A., S. S. Müller, and H. Frey. Beyond Poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications. Biomacromolecules 15:1935–1954, 2014.CrossRefPubMedGoogle Scholar
  33. 33.
    Toepke, M. W., N. A. Impellitteri, J. M. Theisen, and W. L. Murphy. Characterization of thiol-ene crosslinked PEG hydrogels. Macromol. Mater. Eng. 29:699–703, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Simone Stichler
    • 1
  • Tomasz Jungst
    • 1
  • Martha Schamel
    • 1
  • Ilona Zilkowski
    • 1
  • Matthias Kuhlmann
    • 1
  • Thomas Böck
    • 2
  • Torsten Blunk
    • 2
  • Jörg Teßmar
    • 1
  • Jürgen Groll
    • 1
    Email author
  1. 1.Department for Functional Materials in Medicine and DentistryUniversity of WürzburgWürzburgGermany
  2. 2.Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of WürzburgWürzburgGermany

Personalised recommendations