Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 11, pp 3372–3383 | Cite as

Investigation of the Sequential Actions of Doxorubicin and p53 on Tumor Cell Growth Via Branched Polyethylenimine-β-cyclodextrin Conjugates

  • Bei Xie
  • Jian Peng
  • Shuo Wang
  • Xing Zhang
  • Hemin Nie
Article
  • 263 Downloads

Abstract

The combination of gene therapy and chemotherapy has showed increased therapeutic efficacy in the treatment of cancers, but it is not well investigated about the actual coordination pattern between therapeutic gene and chemical drug. In this work, p53/BPEI-β-CD/AD-dox complex was fabricated and employed to investigate the interaction manner between p53 and doxorubicin (Dox). Briefly, branched polyethylenimine (BPEI) was conjugated with β-cyclodextrin hydrate (β-CD) to form BPEI-β-CD backbone, and p53 plasmid was condensed by positively charged BPEI via electrostatic interaction, while Dox was first conjugated with adamantine (AD) and then assembled with BPEI-β-CD backbone via the host–guest interaction. It was found that the BPEI-β-CD backbone possessed high endocytosis efficiency but low cytotoxicity. Moreover, p53/BPEI-β-CD/AD-dox complex released Dox and enabled the expression of p53 gene in a sequential manner, and the released Dox and expressed p53 gene showed successive inhibition of the growth of HeLa cells in vitro. With the ability to co-deliver chemical drug and therapeutic gene and exert their inhibitory actions on tumor cell growth in a sequential manner, this DNA/BPEI-β-CD/AD-drug complex via electrostatic interaction and host–guest assembly not only achieved long-term efficacy in inhibiting tumor cell growth but also can be employed as a platform to investigate the coordination pattern between chemical drugs and therapeutic genes for other purposes.

Keywords

BPEI-β-CD Doxorubicin p53 Co-delivery Sequential actions 

Notes

Acknowledgments

This work was funded by National Natural Science Foundation of China (31200727, H. Nie; 31300788, X. Zhang), Natural Science Foundation of Hunan Province (2015JJ1007, H. Nie), and Hunan University Fund for Interdisciplinary Research (2015JCA02, H. Nie). The authors wish to confirm that there are no known conflicts of interest associated with this publication.

References

  1. 1.
    Adler, A. F., and K. W. Leong. Emerging links between surface nanotechnology and endocytosis: Impact on nonviral gene delivery. Nano Today 5:553–569, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bieber, T., and H. P. Elsasser. Preparation of a low molecular weight polyethylenimine for efficient cell transfection. Biotechniques 30:74, 2001.PubMedGoogle Scholar
  3. 3.
    Cordes, D. B., P. D. Lickiss, and F. Rataboul. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 110:2081–2173, 2010.CrossRefPubMedGoogle Scholar
  4. 4.
    Dang, J. M., and K. W. Leong. Natural polymers for gene delivery and tissue engineering. Adv. Drug. Deliver. Rev. 58:487–499, 2006.CrossRefGoogle Scholar
  5. 5.
    Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6:659–668, 2009.CrossRefPubMedGoogle Scholar
  6. 6.
    Delyagina, E., W. Z. Li, A. Schade, A. L. Kuhlo, N. Ma, and G. Steinhoff. Low molecular weight polyethyleneimine conjugated to magnetic nanoparticles as a vector for gene delivery. AIP Conf. Proc. 1311:479–484, 2010.CrossRefGoogle Scholar
  7. 7.
    Fan, H., Q. D. Hu, F. J. Xu, W. Q. Liang, G. P. Tang, and W. T. Yang. In vivo treatment of tumors using host-guest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL. Biomaterials 33:1428–1436, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Fischer, D., T. Bieber, Y. Li, H. P. Elsasser, and T. Kissel. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 16:1273–1279, 1999.CrossRefPubMedGoogle Scholar
  9. 9.
    Forrest, M. L., N. Gabrielson, and D. W. Pack. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol. Bioeng. 89:416–423, 2005.CrossRefPubMedGoogle Scholar
  10. 10.
    Gao, Z. W., and X. P. Zhao. Preparation and electrorheological characteristics of beta-cyclodextrin-epichlorohydrin-starch polymer suspensions. J. Appl. Polym. Sci. 93:1681–1686, 2004.CrossRefGoogle Scholar
  11. 11.
    Gonzalez, H., S. J. Hwang, and M. E. Davis. New class of polymers for the delivery of macromolecular therapeutics. Bioconj. Chem. 10:1068–1074, 1999.CrossRefGoogle Scholar
  12. 12.
    Gosselin, M. A., W. J. Guo, and R. J. Lee. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconj. Chem. 12:989–994, 2001.CrossRefGoogle Scholar
  13. 13.
    Hu, Q. D., H. Fan, Y. Ping, W. Q. Liang, G. P. Tang, and J. Li. Cationic supramolecular nanoparticles for co-delivery of gene and anticancer drug. Chem. Commun. 47:5572–5574, 2011.CrossRefGoogle Scholar
  14. 14.
    Liboiron, B. D., and L. D. Mayer. Nanoscale particulate systems for multidrug delivery: towards improved combination chemotherapy. Ther. Deliv. 5:149–171, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Lungwitz, U., M. Breunig, T. Blunk, and A. Gopferich. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60:247–266, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    MacKay, J. A., M. Chen, J. R. McDaniel, W. Liu, A. J. Simnick, and A. Chilkoti. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 8:993–999, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mintzer, M. A., and E. E. Simanek. Nonviral vectors for gene delivery. Chem. Rev. 109:259–302, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Namgung, R., K. Singha, M. K. Yu, S. Jon, Y. S. Kim, Y. Ahn, I. K. Park, and W. J. Kim. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 31:4204–4213, 2010.CrossRefPubMedGoogle Scholar
  19. 19.
    Namgung, R., Y. Zhang, Q. L. Fang, K. Singha, H. J. Lee, I. K. Kwon, Y. Y. Jeong, I. K. Park, S. J. Son, and W. J. Kim. Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging. Biomaterials 32:3042–3052, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Neu, M., D. Fischer, and T. Kissel. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J. Gene Med. 7:992–1009, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    Nie, H. M., and C. H. Wang. Fabrication and characterization of PLGA/HAp scaffolds for delivery of BMP-2 plasmid composite DNA. J. Control Release 120:111–121, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Nunes, A., N. Amsharov, C. Guo, J. Van den Bossche, P. Santhosh, T. K. Karachalios, S. F. Nitodas, M. Burghard, K. Kostarelos, and K. T. Al-Jamal. Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery. Small 6:2281–2291, 2010.CrossRefPubMedGoogle Scholar
  23. 23.
    Pan, T. H., S. Khare, F. Ackah, B. Huang, W. P. Zhang, S. Gabos, C. Jin, and M. Stampfl. In vitro cytotoxicity assessment based on KC50 with real-time cell analyzer (RTCA) assay. Comput. Biol. Chem. 47:113–120, 2013.CrossRefPubMedGoogle Scholar
  24. 24.
    Paul, A., Z. M. Binsalamah, A. A. Khan, S. Abbasia, C. B. Elias, D. Shum-Tim, and S. Prakash. A nanobiohybrid complex of recombinant baculovirus and Tat/DNA nanoparticles for delivery of Ang-1 transgene in myocardial infarction therapy. Biomaterials 32:8304–8318, 2011.CrossRefPubMedGoogle Scholar
  25. 25.
    Ping, Y., Q. D. Hu, G. P. Tang, and J. Li. FGFR-targeted gene delivery mediated by supramolecular assembly between beta-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials 34:6482–6494, 2013.CrossRefPubMedGoogle Scholar
  26. 26.
    Pun, S. H., N. C. Bellocq, A. Liu, G. Jensen, T. Machemer, E. Quijano, T. Schluep, S. Wen, H. Engler, J. Heidel, and M. E. Davis. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjug. Chem. 15:831–840, 2004.CrossRefPubMedGoogle Scholar
  27. 27.
    Quereda, J. J., L. Martinez-Alarcon, L. Mendoca, M. J. Majado, J. M. Herrero-Medrano, F. J. Pallares, A. Rios, P. Ramirez, A. Munoz, and G. Ramis. Validation of xCELLigence real-time cell analyzer to assess compatibility in xenotransplantation with pig-to-baboon model. Transpl. Proc. 42:3239–3243, 2010.CrossRefGoogle Scholar
  28. 28.
    Salehi, R., H. Hamishehkar, M. Eskandani, M. Mahkam, and S. Davaran. Development of dual responsive nanocomposite for simultaneous delivery of anticancer drugs. J. Drug Target. 22:327–342, 2014.CrossRefPubMedGoogle Scholar
  29. 29.
    Tacar, O., P. Sriamornsak, and C. R. Dass. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 65:157–170, 2013.CrossRefPubMedGoogle Scholar
  30. 30.
    Tang, G. P., H. Y. Guo, F. Alexis, X. Wang, S. Zeng, T. M. Lim, J. Ding, Y. Y. Yang, and S. Wang. Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system. J. Gene Med. 8:736–744, 2006.CrossRefPubMedGoogle Scholar
  31. 31.
    Tang, G. P., H. Y. Guo, F. Alexis, X. Wang, S. Zeng, T. M. Lim, J. Ding, Y. Y. Yang, and S. Wang. Low molecular weight polyethylenimines linked by beta-cyclodextrin for gene transfer into the nervous system. J. Gene Med. 8:736–744, 2006.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang, M. X., J. D. Tucker, P. J. Lu, B. Wu, C. Cloer, and Q. L. Lu. Tris[2-(acryloyloxy)ethyl]isocyanurate cross-linked low-molecular-weight polyethylenimine as gene delivery carriers in cell culture and dystrophic mdx mice. Bioconjug. Chem. 23:837–845, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao, Y. H., Y. T. Fan, W. Y. Wang, H. Gu, N. L. Zhou, and J. Shen. Novel GO-COO-beta-CD/CA inclusion: its blood compatibility, antibacterial property and drug delivery. Drug Deliv. 21:362–369, 2014.CrossRefPubMedGoogle Scholar
  34. 34.
    Yamashita, A., H. S. Choi, T. Ooya, N. Yui, H. Akita, K. Kogure, and H. Harashima. Improved cell viability of linear polyethylenimine through gamma-cyclodextrin inclusion for effective gene delivery. ChemBioChem 7:297–302, 2006.CrossRefPubMedGoogle Scholar
  35. 35.
    Yang, X., and J. C. Kim. beta-Cyclodextrin grafted polyethyleneimine hydrogel immobilizing hydrophobically modified glucose oxidase. Int. J. Biol. Macromol. 48:661–666, 2011.CrossRefPubMedGoogle Scholar
  36. 36.
    Yang, C. A., H. Z. Li, S. H. Goh, and J. Li. Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 28:3245–3254, 2007.CrossRefPubMedGoogle Scholar
  37. 37.
    Yang, Y. Y., X. Wang, Y. Hu, H. Hu, D. C. Wu, and F. J. Xu. Bioreducible POSS-cored star-shaped polycation for efficient gene delivery. ACS Appl. Mater. Interfaces 6:1044–1052, 2014.CrossRefPubMedGoogle Scholar
  38. 38.
    Yang, Y., Y. M. Zhang, Y. Chen, D. Zhao, J. T. Chen, and Y. Liu. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem. Eur. J. 18:4208–4215, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Yin, L. C., Z. Y. Song, K. H. Kim, N. Zheng, H. Y. Tang, H. Lu, N. Gabrielson, and J. J. Cheng. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials 34:2340–2349, 2013.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang, J., and P. X. Ma. Host-guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications. Nano Today 5:337–350, 2010.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Bei Xie
    • 1
  • Jian Peng
    • 1
  • Shuo Wang
    • 1
  • Xing Zhang
    • 2
  • Hemin Nie
    • 1
  1. 1.Department of Biomedical EngineeringHunan UniversityChangshaChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations