Skip to main content
Log in

A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Haemodynamic simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. We propose a novel linear 1-D dynamical theory of blood flow in networks of flexible vessels that is based on a generalized Darcy’s model and for which a full analytical solution exists in frequency domain. We assess the accuracy of this formulation in a series of benchmark test cases for which computational 1-D and 3-D solutions are available. Accordingly, we calculate blood flow and pressure waves, and velocity profiles in the human common carotid artery, upper thoracic aorta, aortic bifurcation, and a 20-artery model of the aorta and its larger branches. Our analytical solution is in good agreement with the available solutions and reproduces the main features of pulse waveforms in networks of large arteries under normal physiological conditions. Our model reduces computational time and provides a new approach for studying arterial pulse wave mechanics; e.g.,  the analyticity of our model allows for a direct identification of the role played by physical properties of the cardiovascular system on the pressure waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Alastruey, J., A. Khir, K. Matthys, P. Segers, S. Sherwin, P. Verdonck, K. Parker, and J. Peiró. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements. J. Biomech. 44: 2250–2258, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alastruey, J., S. Moore, K. Parker, T. David, J. Peiró, and S. Sherwin. Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models. Int. J. Numer. Meth. Fluids 56:1061–1067, 2008.

    Article  Google Scholar 

  3. Alastruey, J., K. Parker, and S. Sherwin. “Arterial pulse wave haemodynamics.” In: 11th International Conference on Pressure Surges, edited by S. Anderson. Lisbon: Virtual PiE Led t/a BHR Group, 2010, pp. 401–442.

  4. Avolio, A. Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 18:709–718, 1980.

    Article  CAS  PubMed  Google Scholar 

  5. Azer, K., and C. Peskin. A one-dimensional model of blood flow in arteries with friction and convection based on the Womersley velocity profile. Cardiov. Eng. 7:51–73, 2007.

    Article  Google Scholar 

  6. Bessems, D., C. Giannopapa, M. Rutten, and F. van de Vosse. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. J. Biomech. 41, 284–291, 2008.

    Article  PubMed  Google Scholar 

  7. Blanco, P., S. Watanabe, E. Dari, M. Passos, and R. Feijóo. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms. Biomech. Model. Mechanobiol. 13:1303–1330, 2014.

    Article  PubMed  Google Scholar 

  8. Čanić, S., and E. Kim. Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axi-symmetric vessels. Math. Meth. Appl. Sci. 26:1161–1186, 2003.

    Article  Google Scholar 

  9. Cebral, J., M. Castro, J. Burgess, R. Pergolizzi, M. Sheridan, and C. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26(10):2550–2559, 2005.

    PubMed  Google Scholar 

  10. Chen, P., A. Quarteroni, and G. Rozza. Simulation-based uncertainty quantification of human arterial network hemodynamics. Int. J. Numer. Methods Biomed. Eng. 29:698–721, 2013.

    Article  Google Scholar 

  11. Coccarelli, A., and P. Nithiarasu. A robust finite element modeling approach to conjugate heat transfer in flexible elastic tubes and tube networks. Numer. Heat Tr. A-Appl. 67:513–530, 2015.

    Article  CAS  Google Scholar 

  12. Collepardo Guevara, R., and E. Corvera Poiré. Controlling viscoelastic flow by tuning frequency during occlusions. Phys. Rev. E 76, 026301, 2007.

    Article  Google Scholar 

  13. Danielsen, M., and J. Ottesen. “ A cardiovascular model. ” In: Applied Mathematical Models in Human Physiology, edited by J. Ottesen, M. Olufsen, and J. Larsen. Philadelphia: SIAM Monographs on Mathematical Human Physiology, 2004, pp. 137–155.

  14. del Río, J. A., M. López de Haro, and S. Whitaker. Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys. Rev. E 58, 6323–6327, 1998.

    Article  Google Scholar 

  15. del Río, J. A., M. López de Haro, and S. Whitaker. Erratum: Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube [Phys. Rev. E 58, 6323 (1998)]. Phys. Rev. E 64, 039901, 2001.

    Google Scholar 

  16. Eck, V., J. Feinberg, H. Langtangen, and L. Hellevik. Stochastic sensitivity analysis for timing and amplitude of pressure waves in the arterial system. Int. J. Numer. Method. Biomed. Eng. 31 (EPub), 2015.

  17. Figueroa, C., I. Vignon-Clemental, K. Jansen, T. Hughes, and C. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195:5685–5706, 2006.

    Article  Google Scholar 

  18. Flores Gerónimo, J., E. Corvera Poiré, J. A. del Río, and M. López de Haro. A plausible explanation for heart rates in mammals. J. Theor. Biol. 265, 599–603, 2010.

    Article  Google Scholar 

  19. Flores Gerónimo, J., A. Meza Romero, R. D. M. Travasso, and E. Corvera Poiré. Flow and anastomosis in vascular networks. J. Theor. Biol. 317:257, 2013.

    Article  Google Scholar 

  20. Formaggia, L., D. Lamponi, and A. Quarteroni. One-dimensional models for blood flow in arteries. J. Eng. Math. 47:251–276, 2003.

    Article  Google Scholar 

  21. Frank, O. Die Grundform des arteriellen Pulses. Erste Abhandlung Mathematische Analyse Z. Biol. 37:483–526, 1899.

    Google Scholar 

  22. Fung, Y. C. Biomechanics, Circulation. New York: Springer, 1984.

    Google Scholar 

  23. Gallo D., D. A. Steinman, and U. Morbiducci. An Insight into the mechanistic role of the common carotid artery on the hemodynamics at the carotid bifurcation. Ann. Biomed. Eng. 43, 68–81, 2015.

    Article  PubMed  Google Scholar 

  24. Gerbeau, J. F., M. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput. Struct. 83(2-3):155–165, 2005.

    Article  Google Scholar 

  25. Hale, J. F., D. A. McDonald and J. R. Womersley. Velocity profiles of oscillating arterial flow, with some calculations of viscous drag and the Reynolds number. J. Physiol. 128:629–664, 1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hellevik, L. R., J. Vierendeels, T. Kiserud, N. Stergiopulos, F. Irgens, and E. Dick. An assessment of ductus venosus tapering and wave transmission from the fetal heart. Biomech. Model. Mechanobiol. 8(6):509–517, 2009.

    Article  PubMed  Google Scholar 

  27. Huberts, W., K. V. Canneyt, P. Segers, S. Eloot, J. Tordoir, P. Verdonck, F. van de Vosse, and E. Bosboom. Experimental validation of a pulse wave propagation model for predicting hemodynamics after vascular access surgery. Med. Eng. Phys. 45:1684–1691, 2012.

    CAS  Google Scholar 

  28. Huberts, W., C. de Jonge, W.P.M. van der Linden, M.A. Inda, J.H.M. Tordoir, F.N. van de Vosse, and E. Bosboom. A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery. Part A: identification of most influential model parameters. J. Biomech. 35:810–826, 2013.

    CAS  Google Scholar 

  29. Hughes, T., and J. Lubliner. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18:161–170, 1973.

    Article  Google Scholar 

  30. Liang, F., S. Takagi, R. Himeno, and H. Liu. Biomechanical characterization of ventricular–arterial coupling during aging: a multi-scale model study. J. Biomech. 42:692–704, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Mazumbdar, J. An Introduction to Mathematical Physiology and Biology. New York: Second Edition, Cambridge University Press, 1999.

    Book  Google Scholar 

  32. Müller, L., and E. Toro. Well balanced high order solver for blood flow in networks of vessels with variable properties. Int. J. Numer. Method. Biomed. Eng. 29:1388–1411, 2013.

    Article  PubMed  Google Scholar 

  33. Mynard, J., and P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun. Numer. Meth. Eng. 24:367–417, 2008.

    Article  Google Scholar 

  34. Nichols, W. W., and M. F. O’Rourke. McDonalds Blood Flow in Arteries: Theoretical, Experimental, and Clinical Principles, New York: Oxford University Press, Vol. 11, 2005.

  35. Olufsen, M., C. Peskin, W. Kim, E. Pedersen, A. Nadim, and J. Larsen. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28:1281–1299, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Papadakis, G. Wave propagation in tapered vessels: new analytic solutions that account for vessel distensibility and fluid compressibility. J. Pressure Vessel Technol. 136:014501 1–9, 2014.

    Google Scholar 

  37. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7):845–856, 1995.

    Article  CAS  PubMed  Google Scholar 

  38. Quarteroni, A., M. Tuveri, A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2:163–197, 2000.

    Article  Google Scholar 

  39. Reymond, P., Y. Bohraus, F. Perren, F. Lazeyras, and N. Stergiopulos. Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 301:H1173–H1182, 2011.

    Article  CAS  PubMed  Google Scholar 

  40. Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297:H208–H222, 2009.

    Article  CAS  PubMed  Google Scholar 

  41. Saito, M., Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada, and P. Y. Lagrée. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results. J. Biomech. Eng. 133:121005, 2011.

  42. Sherwin, S., L. Formaggia, J. Peiró, and V. Franke. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Meth. Fluids 43:673–700, 2003.

    Article  Google Scholar 

  43. Smith, N., A. Pullan, and P. Hunter. An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62:990–1018, 2002.

    Article  Google Scholar 

  44. Steele, B., J. Wan, J. Ku, T. Hughes, and C. Taylor. In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans. Biomed. Eng. 50:649–656, 2003.

    Article  PubMed  Google Scholar 

  45. Steinman, D., J. Milner, C. Norley, S. Lownie, and D. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24(4):559–566, 2003.

    PubMed  Google Scholar 

  46. Stergiopulos, N., B. Westerhof, and N. Westerhof. Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. 276:H81–H88, 1999.

    CAS  PubMed  Google Scholar 

  47. Stergiopulos, N., D. Young, and T. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25:1477–1488, 1992.

    Article  CAS  PubMed  Google Scholar 

  48. Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 7825:(97), 1998.

  49. Torres Rojas, A. M., A. Meza Romero, I. Pagonabarraga, R. D. M. Travasso, and E. Corvera Poiré. Obstructions in vascular networks: relation between network morphology and blood supply. PLOS One 10:e0128111, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ursino, M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Heart Circ. Physiol. 275:H1733–H1747, 1998.

    CAS  Google Scholar 

  51. Vignon-Clementel, I., C. Figueroa, K. Jansen, and C. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods App. Mech. Eng. 195:3776–3796, 2006.

    Article  Google Scholar 

  52. Westerhof, N., J. W. Lankhaar, and B. Westerhof. The arterial Windkessel. Med. Biol. Eng. Comput. 47:131–141, 2009.

    Article  PubMed  Google Scholar 

  53. Willemet, M., and J. Alastruey. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness. Am. J. Physiol. Heart Circ. Physiol. 309:H663–H675, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Willemet, M., V. Lacroix, and E. Marchandise. Validation of a 1D patient-specific model of the arterial hemodynamics in bypassed lower-limbs: Simulations against in vivo measurements. Med. Eng. Phys. 35:1573–1583, 2013.

    Article  PubMed  Google Scholar 

  55. Xiao, N., J. Alastruey, and C. Figueroa. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Method. Biomed. Eng. 30, 204–231, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs Nan Xiao and Alberto Figueroa for providing all 3-D data used in this study. JFG acknowledges financial support from CONACYT (Mexico) through fellowship 240094. JA gratefully acknowledges the support of an EPSRC Project Grant (EP/K031546/1), the Centre of Excellence in Medical Engineering (funded by the Wellcome Trust and EPSRC under Grant Number WT 088641/Z/09/Z), and the National Institute for Health Research (NIHR) Biomedical Research Centre at Guys and St Thomas’ NHS Foundation Trust in partnership with King’s College London. ECP declares that the research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2011-IIF) under Grant Agreement N0 301214, as well as financial support from CONACYT (Mexico) through Projects 83149 and 219584.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Corvera Poiré.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Appendices

Appendix 1: Derivation of Generalized Darcy’s Elastic Model (GDEM)

Equations (1), (2), (3) and (4) are obtained from the linearized momentum balance equations:

$$\rho \frac{\partial \mathbf { v}}{\partial t } = -\mathbf { \nabla } p - \mathbf { \nabla } \cdot \sigma ,$$
(48)

where \(\mathbf {\nabla } \cdot \sigma\) represents the divergence of the viscous stress tensor. We consider a Maxwell fluid – the simplest fluid that presents viscoelastic behaviour – for which the fluid velocity and stress tensor are related by

$$t_r \frac{\partial \mathbf { \sigma }}{\partial t}=- \eta \nabla \mathbf v - \mathbf { \sigma },$$
(49)

where \(t_r\) is the Maxwell relaxation time and is given by the ratio of the viscosity, \(\eta\), and the elastic modulus, G; i.e., \(t_r=\frac{\eta }{G}\). In the limit of zero relaxation time, Eq. (49) reduces to the constitutive equation for Newtonian fluids. We assume that the radial velocity is much smaller than the axial velocity, so that the momentum balance equations (48), together with the constitutive equations (49) are:

$$t_r \rho \frac{\partial ^2u}{\partial t^2} + \rho \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x} - t_r\frac{\partial ^2 p}{\partial t \partial x} + \eta \left( \frac{\partial ^2u}{\partial r^2} +\frac{1}{r}\frac{\partial u}{\partial r}\right) ,$$
(50)
$$\frac{\partial p}{\partial r} =0.$$
(51)

Equation (51) implies that pressure is only a function of \(x\) and t, and adjusts instantaneously to any point of a luminal cross-sectional area.

We then transform Eq. (50) to the frequency domain. For simplicity of notation we define \(k=k(\omega )\), such that \(k^2=\frac{\rho }{\eta }\left( t_r \omega ^2 + i\omega \right)\) and \(B(x, \omega )=\left( \frac{1-i\omega t_r}{\eta } \right) \frac{d{\hat{p}} }{dx}\). We obtain the following equation for the axial velocity \({\hat{u}}(x,r,\omega )\) in frequency domain,

$$r^2\frac{\partial ^2 {\hat{u}}}{\partial r^2}+r \frac{\partial {\hat{u}}}{\partial r} + k^2r^2{\hat{u}}=B r^2.$$
(52)

This is a Bessel equation of order zero, whose general solution is

$${\hat{u}}(x,r,\omega )=aJ_0(kr)+bN_0(kr)+ {\hat{u}}^p(x,\omega ),$$
(53)

where \(J_0\) is the Bessel function of order zero of the first class and \(N_0\) is the Bessel function of order zero of the second class, also known as Neumann function of order zero. The particular solution \({\hat{u}}^p(x,\omega )\) is given by

$${\hat{u}}^p=\frac{B}{k^2}=\frac{1}{i\omega \rho } \frac{d{\hat{p}}}{dx},$$
(54)

and the general solution for \({\hat{u}}(x,r,\omega )\) is

$${\hat{u}}(x,r,\omega )=aJ_0(kr)+bN_0(kr)+\frac{1}{i\omega \rho } \frac{d{\hat{p}}(x,\omega )}{dx}.$$
(55)

In order to determine the values of a and b we impose the following boundary conditions: the axial velocity, u, has to be finite at \(r=0\), and zero at the average radius, \(R_0\). This gives Eq. (1) that allows for the computation of velocity profiles. \(K_L\) is a local dynamic permeability in frequency domain given by Eq. (2). Inverse Fourier transformation of Eq. (1) allows one to obtain the velocity profiles \( u(x,r,t)\) in time domain. Averaging Eq. (1) over the cross sectional area gives a generalized Darcy’s law in frequency domain, namely,

$${\hat{U}} (x,\omega ) = -\frac{ K(\omega )}{\eta } \frac{\partial {\hat{p}}(x,\omega )}{\partial x} ,$$
(56)

where \({\hat{U}} (x,\omega )\) is the axial velocity averaged over the average cross-sectional area \(A_0\). The dynamic permeability, \(K(\omega )\), is simply the average of the local dynamic permeability over the average cross-sectional area and is given by Eq. (4). The \(x\)-dependence of \({\hat{U}} (x,\omega )\) comes from the pressure gradient. Equation (3) follows from Eq. (56) by assuming that the flow is approximately \(Q(x,t) \approx A_0 U(x,t)\). The approximation of the area by its average \(A_0\) is necessary in order to keep a linear relation between flow and pressure gradient in frequency domain.

The fluid velocity \({\mathbf{v}} = u(x,r,t) \, \hat{\imath}+ v(x,r,t) \, \hat{r}\) satisfies the continuity equation

$${\frac{\partial \rho }{ \partial t} + \mathbf{\nabla } \cdot \left( \rho \mathbf v \right) =0.}$$
(57)

For incompressible fluids in cylindrical coordinates, this one is given by

$$\frac{\partial u}{ \partial x} + \frac{1}{ r} \frac{\partial (r v)}{ \partial r} =0.$$
(58)

Averaging this equation over the mean cross-sectional area gives

$$\frac{\partial U}{ \partial x} + \frac{2\pi }{ A_0} R_0 v_{r=R_0} =0,$$
(59)

where U(xt) is the axial velocity averaged over the mean cross-sectional area. We consider that the fluid and wall velocities are equal at the average radius, i.e., \(v_{r=R_0} =\left. \frac{\partial R}{ \partial t}\right| _{R_0}\), which leads to

$$\left. \frac{\partial U}{ \partial x} + \frac{2\pi }{ A_0} R_0\frac{\partial R}{ \partial t}\right| _{R_0} =0$$
(60)

and, in terms of the flow \(Q(x,t)=A_0 U(x,t)\), it becomes

$$\left. \frac{\partial Q}{ \partial x} + 2\pi R_0\frac{\partial R}{ \partial t}\right| _{R_0} =0.$$
(61)

A relationship between P and R is required to write the local radius of the vessel in terms of the local blood pressure. Here we consider a relationship between the pressure and the elastic deformation of the tube, \(\Delta R\),22,31

$$p - p_\mathrm{ext}=\frac{Eh}{1-\nu ^2}\frac{\Delta R}{R^2_0} ,$$
(62)

where \(p-p_\mathrm{ext}\) is the transmural pressure, E is the Young modulus, h is the vessel thickness, and \(\nu\) the Poisson ratio, that we take as \(\nu =1/2\) (i.e., we assume the arterial wall to be an incompressible material). Around the radius at diastole, \(R_\mathrm{d}\), this can be approximated as

$$p - p_\mathrm{d}=\frac{4}{3}Eh\frac{R-R_\mathrm{d}}{R^2_\mathrm{d}}.$$
(63)

where \(p_\mathrm{d}\) is the pressure at diastole. This type of ‘tube law’ has been extensively used in the literature.2, 4, 5,8,11,20,26,30,33,35,4244,54,55

We take the time derivative of Eq. (63) in order to find an expression for the time derivative of the radius in terms of the time derivative of the pressure to be used in Eq. (61). We evaluate it at the average radius, \({R_0}\), and obtain

$$\left. \frac{\partial R}{ \partial t}\right| _{R_0} =\left. \frac{3R^2_d}{4Eh}\frac{\partial p}{ \partial t} \right| _{R_0}= \frac{3R^2_d}{4Eh} \frac{\partial p}{ \partial t}.$$
(64)

Equations (61) and (64) give Eq. (5), in frequency domain, with \(C=\frac{3 \pi R_0 R^2_d}{2Eh}\).

Appendix 2: Full Aorta Model

This appendix describes the analytical solution for the full-aorta model, which consists of 20 vessels representing the aorta and its first generation of larger branches. At the inlet of the ascending aorta, the flow rate measured in vivo was prescribed as the inflow boundary condition, \(Q_{\mathrm{in}}(t)\). Terminal vessels were coupled to three-element lumped parameter models simulating blood flow and pressure in downstream vessels. Following the notation of Fig. 5, node 1 is of Type I, nodes 2, 3, 5, 6, 7, 8, 9, and 10 are of Type II, node 4 is of Type III, and nodes 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 are of Type IV. According to Eqs. (29), (30), (31) and (32), the system of equations for the pressures at the nodes, in matrix form and in terms of the functions \(\kappa _{1}^{i}\), \(\kappa _{2}^{i}\) and \(\kappa _{3}^{i}\) defined in Eq. (28), is given by: \({{\hat{\mathbf {p}}}}={\mathbf {K}}^{-1} {{\hat{\mathbf {Q}}}}\). Here \({{\hat{\mathbf {p}}}}\) is the 20-element vector for the pressures at the nodes, \({{\hat{\mathbf {Q}}}}\) is the vector of the inflow boundary conditions whose sole non-zero element is the first one and is given by \(-\frac{{\hat{Q}}_{in}^{1}}{\cos (k_{c}^{1}l^{1})}\), and \({\mathbf {K}}^{-1}\) is the inverse matrix of \({\mathbf {K}}\), which is a response function of the system. \({\mathbf {K}}\) is given by:

$${\mathbf {K}}= \left( \begin{array}{cccccccccccccccccccc} a &{} \kappa _{2}^{2} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{11} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \kappa _{2}^{2} &{} b &{} \kappa _{2}^{3} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{12} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \kappa _{2}^{3} &{} c &{} \kappa _{2}^{4} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{13} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \kappa _{2}^{4} &{} d &{} \kappa _{2}^{5} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \kappa _{2}^{5} &{} e &{} \kappa _{2}^{6} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{14} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{6} &{} f &{} \kappa _{2}^{7} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{15} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{7} &{} g &{} \kappa _{2}^{8} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{16} &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{8} &{} h &{} \kappa _{2}^{9} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{17} &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{9} &{} j &{} \kappa _{2}^{10} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{18} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{10} &{} k &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{19} &{} \kappa _{2}^{20} \\ \kappa _{2}^{11} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} l &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} \kappa _{2}^{12} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} m &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} \kappa _{2}^{13} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} n &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{14} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} p &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{15} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} q &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{16} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} r &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{17} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} s &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{18} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} t &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{19} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} u &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \kappa _{2}^{20} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} v \\ \end{array} \right) ,$$

where

$$\begin{array}{lllllll} a = \kappa _{3}^{1}-\kappa _{1}^{2}-\kappa _{1}^{11} , &{} &{} f = -\kappa _{1}^{6}-\kappa _{1}^{7} - \kappa _{1}^{15} , &{} &{} l= -\kappa _{1}^{11}-\frac{1}{z_{11}}, &{} &{} r=-\kappa _{1}^{16}-\frac{1}{z_{16}} , \\ b = -\kappa _{1}^{2}-\kappa _{1}^{3} - \kappa _{1}^{12} , &{} &{} g = -\kappa _{1}^{7}-\kappa _{1}^{8} - \kappa _{1}^{16} , &{} &{} m=-\kappa _{1}^{12}-\frac{1}{z_{12}} , &{} &{} s=-\kappa _{1}^{17}-\frac{1}{z_{17}} , \\ c = -\kappa _{1}^{3}-\kappa _{1}^{4} - \kappa _{1}^{13} , &{} &{} h = -\kappa _{1}^{8}-\kappa _{1}^{9} - \kappa _{1}^{17} , &{} &{} n=-\kappa _{1}^{13}-\frac{1}{z_{13}} , &{} &{} t=-\kappa _{1}^{18}-\frac{1}{z_{18}} , \\ d = -\kappa _{1}^{4}-\kappa _{1}^{5} , &{} &{} j = -\kappa _{1}^{9}-\kappa _{1}^{10} - \kappa _{1}^{18} , &{} &{} p=-\kappa _{1}^{14}-\frac{1}{z_{14}} , &{} &{} u=-\kappa _{1}^{19}-\frac{1}{z_{19}} , \\ e = -\kappa _{1}^{5}-\kappa _{1}^{6} - \kappa _{1}^{14} , &{} &{} k = -\kappa _{1}^{10}-\kappa _{1}^{19} - \kappa _{1}^{20} , &{} &{} q=-\kappa _{1}^{15}-\frac{1}{z_{15}} , &{} &{} v= -\kappa _{1}^{20}-\frac{1}{z_{20}} . \end{array}$$

Inversion of the matrix \({\mathbf {K}}\) was done symbolically using Mathematica, which took less than a second on a standard laptop. However, the text length required to explicitly write \({\mathbf {K}}^{-1}\) and the pressures at the nodes is excessively large to show it in an Appendix. Once the pressures at the nodes were obtained, analytical expressions for pressure, the flow and velocity profiles in each vessel were calculated using Eqs. (14), (15), and (16) for vessel 1, and Eqs. (8), (10), and (12) for the rest of the vessels. For instance, for the first aortic segment, the pressure at the first node, \(\hat{p}^{[1]}\), is necessary in Eqs  (14), (15), and (16) where \(\hat{p}_{o}=\hat{p}^{[1]}\). This one is given by:

$$\begin{aligned} \hat{p}^{[1]} &= - \frac{n \kappa _{2}^{3} \mathcal {F}1 \hat{Q}_\mathrm{in}^{1} }{ \kappa _{2}^{2} \kappa _{2}^{13} \cos (k_{c}^{1} l^{1}) } - \frac{B \hat{Q}_\mathrm{in}^{1}}{ \kappa _{2}^{2} \kappa _{2}^{11} \kappa _{2}^{12} \cos (k_{c}^{1} l^{1}) } \\ &\quad \times \left[ \frac{ p \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{12} \mathcal {F}2 }{d m \kappa _{2}^{3} \kappa _{2}^{14} } - \frac{ \mathcal {F}1 \mathrm{T9} }{d m \kappa _{2}^{3} \left( \kappa _{2}^{13}\right) ^2 } \right] , \end{aligned}$$
(65)

with

$$\mathcal {F}1 = \frac{\mathcal {F}2 \mathrm{T7}}{n \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{14} } + \frac{d q \kappa _{2}^{6} \kappa _{2}^{13} \mathcal {F}3 }{n \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{15} },$$
(66)
$$\mathcal {F}2 =- \left( \frac{ F \mathcal {F}3 }{ p \kappa _{2}^{6} \kappa _{2}^{15} } + \frac{ r \kappa _{2}^{7} \kappa _{2}^{14} \mathcal {F}4 }{ p \kappa _{2}^{6} \kappa _{2}^{16} } \right) ,$$
(67)
$$\mathcal {F}3 = - \left( \frac{ G \mathcal {F}4 }{ q \kappa _{2}^{7} \kappa _{2}^{16} } + \frac{ s \kappa _{2}^{8} \kappa _{2}^{15} \mathcal {F}5 }{q \kappa _{2}^{7} \kappa _{2}^{17} } \right) ,$$
(68)
$$\mathcal {F}4 = - \left( \frac{ H \mathcal {F}5 }{r \kappa _{2}^{8} \kappa _{2}^{17} } + \frac{ t \kappa _{2}^{9} \kappa _{2}^{16} \mathcal {F}6 }{r \kappa _{2}^{8} \kappa _{2}^{18} }\right) ,$$
(69)
$$\mathcal {F}5 = \frac{\mathrm{N3}}{\mathcal {M}}- \frac{J \mathcal {F}6}{s \kappa _{2}^{9} \kappa _{2}^{18} },$$
(70)
$$\mathcal {F}6 = \frac{ \mathrm{N1} - \mathrm{N2} }{ \mathcal {M} }.$$
(71)

These quantities contain another set of definitions given by:

$$\mathrm{N1} = d l m n p q r s u \kappa _{2}^{2} \kappa _{2}^{3} \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{6} \kappa _{2}^{7} \kappa _{2}^{8} \kappa _{2}^{9} \kappa _{2}^{11} \left( \kappa _{2}^{12} \kappa _{2}^{14} \kappa _{2}^{15} \kappa _{2}^{16} \kappa _{2}^{17} \kappa _{2}^{18} \kappa _{2}^{20} \right) ^{2} \left( \kappa _{2}^{13} \right) ^{3} K,$$
(72)
$$\mathrm{N2} = d l m n p q r s v \kappa _{2}^{2} \kappa _{2}^{3} \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{6} \kappa _{2}^{7} \kappa _{2}^{8} \kappa _{2}^{9} \kappa _{2}^{11} \left( \kappa _{2}^{12} \kappa _{2}^{14} \kappa _{2}^{15} \kappa _{2}^{16} \kappa _{2}^{17} \kappa _{2}^{19} \kappa _{2}^{20} \right) ^{2} \left( \kappa _{2}^{13} \kappa _{2}^{18} \right) ^{3},$$
(73)
$$\mathrm{N3} = d l m n p q r t u v \kappa _{2}^{2} \kappa _{2}^{3} \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{6} \kappa _{2}^{7} \kappa _{2}^{8} \kappa _{2}^{11} \left( \kappa _{2}^{10} \kappa _{2}^{12} \kappa _{2}^{14} \kappa _{2}^{15} \kappa _{2}^{16} \kappa _{2}^{18} \kappa _{2}^{20}\right) ^{2} \left( \kappa _{2}^{13} \kappa _{2}^{17} \right) ^{3},$$
(74)
$$\mathcal {M} = -v \kappa _{2}^{18} \kappa _{2}^{20} \left( \kappa _{2}^{19} \right) ^{2} \mathrm{T1} + u \kappa _{2}^{20} \left( K \mathrm{T1} -t v \kappa _{2}^{17} \kappa _{2}^{18} \kappa _{2}^{20} \left( \kappa _{2}^{10}\right) ^{2} \mathrm{T2} \right) ,$$
(75)
$$\mathrm{T1} = \kappa _{2}^{20} J \mathrm{T2} - s t \kappa _{2}^{16} \kappa _{2}^{17} \kappa _{2}^{18} \kappa _{2}^{20} \left( \kappa _{2}^{9} \right) ^2 \mathrm{T3},$$
(76)
$$\mathrm{T2} = \kappa _{2}^{18} H \mathrm{T3} - r s \kappa _{2}^{15} \kappa _{2}^{16} \kappa _{2}^{17} \kappa _{2}^{18} \left( \kappa _{2}^{8}\right) ^2 \mathrm{T4},$$
(77)
$$\mathrm{T3} = \kappa _{2}^{17} G \mathrm{T4} - q r \kappa _{2}^{14} \kappa _{2}^{15} \kappa _{2}^{16} \kappa _{2}^{17} \left( \kappa _{2}^{7}\right) ^2 \mathrm{T5},$$
(78)
$$\mathrm{T4} = \kappa _{2}^{16} F \mathrm{T5} - d p q \kappa _{2}^{13} \kappa _{2}^{14} \kappa _{2}^{15} \kappa _{2}^{16} \left( \kappa _{2}^{6}\right) ^2 \mathrm{T6},$$
(79)
$$\mathrm{T5} = \kappa _{2}^{15} \mathrm{T6} \mathrm{T7} + n p \kappa _{2}^{12} \kappa _{2}^{14} \kappa _{2}^{15} \left( \kappa _{2}^{4} \kappa _{2}^{5} \kappa _{2}^{13} \right) ^2 \mathrm{T8},$$
(80)
$$\mathrm{T6} = d m n \kappa _{2}^{11} \kappa _{2}^{14} \left( \kappa _{2}^{3} \kappa _{2}^{12} \kappa _{2}^{13} \right) ^2 A - \kappa _{2}^{14} \mathrm{T8} \mathrm{T9},$$
(81)
$$\mathrm{T7} = p D - d \kappa _{2}^{13} \left( \kappa _{2}^{14}\right) ^2,$$
(82)
$$\mathrm{T8} = \kappa _{2}^{12} \kappa _{2}^{13} A B - l m \kappa _{2}^{11} \kappa _{2}^{12} \kappa _{2}^{13} \left( \kappa _{2}^{2}\right) ^2,$$
(83)
$$\mathrm{T9} = d C \kappa _{2}^{13} - n \kappa _{2}^{12} \kappa _{2}^{13} \left( \kappa _{2}^{4}\right) ^2,$$
(84)

that in turn contain a third set of definitions given by:

$$A = a l - \left( \kappa _{2}^{11} \right) ^{2},$$
(85)
$$B = b m \kappa _{2}^{11} - \kappa _{2}^{11} \left( \kappa _{2}^{12} \right) ^{2},$$
(86)
$$C = c n \kappa _{2}^{12} - \kappa _{2}^{12} \left( \kappa _{2}^{13} \right) ^{2},$$
(87)
$$D = d e \kappa _{2}^{13} - \kappa _{2}^{13} \left( \kappa _{2}^{5} \right) ^{2},$$
(88)
$$F = f q \kappa _{2}^{14} - \kappa _{2}^{14} \left( \kappa _{2}^{15} \right) ^{2},$$
(89)
$$G = g r \kappa _{2}^{15} - \kappa _{2}^{15} \left( \kappa _{2}^{16} \right) ^{2},$$
(90)
$$H = h s \kappa _{2}^{16} - \kappa _{2}^{16} \left( \kappa _{2}^{17} \right) ^{2},$$
(91)
$$J = j t \kappa _{2}^{17} - \kappa _{2}^{17} \left( \kappa _{2}^{18} \right) ^{2},$$
(92)
$$K = k v \kappa _{2}^{18} - \kappa _{2}^{18} \left( \kappa _{2}^{20} \right) ^{2}.$$
(93)

Appendix 3: Error Calculations

For the test cases presented in “Common Carotid Artery” to “Full Aorta Model” sections, the numerical solutions of pressure (p), pressure difference between inlet and outlet (\(\Delta p\)), volumetric flow rate (Q), and change in radius from diastole (\(\Delta r\)) given by the analytical GDEM were compared with corresponding values provided by computational 1-D and 3-D formulations. We used the following relative error metrics for p and Q:

$$\begin{aligned} \mathcal {E}^\mathrm{RMS}_{p}&= \sqrt{\frac{1}{n}\sum _{i=1}^n\left( \frac{p_i^{\mathrm{GDEM}}-\mathscr {P}_i}{\mathscr {P}_i} \right) ^2},&\mathcal {E}^\mathrm{RMS}_{Q}&= \sqrt{\frac{1}{n}\sum _{i=1}^n \left( \frac{Q_i^{\mathrm{GDEM}}-\mathscr {Q}_i}{ \max _j(\mathscr {Q}_j)}\right) ^2}, \end{aligned}$$
(94)
$$\begin{aligned} \mathcal {E}^\mathrm{MAX}_{p}&= \mathop {\max }_{\begin{array}{c} i \end{array}}\left|\frac{p_i^{\mathrm{GDEM}}-\mathscr {P}_i}{\mathscr {P}_i}\right|,&\mathcal {E}^\mathrm{MAX}_{Q}&= \mathop {\max }_{\begin{array}{c} i \end{array}}\left|\frac{Q_i^{\mathrm{GDEM}}-\mathscr {Q}_i}{\max _j(\mathscr {Q}_j)}\right|, \end{aligned}$$
(95)
$$\begin{aligned} \mathcal {E}^\mathrm{SYS}_{p}&= \frac{\max (p^{\mathrm{GDEM}})-\max (\mathscr {P})}{\max (\mathscr {P})},&\mathcal {E}^\mathrm{SYS}_{Q}&= \frac{\max (Q^{\mathrm{GDEM}})-\max (\mathscr {Q})}{\max (\mathscr {Q})}, \end{aligned}$$
(96)
$$\begin{aligned} \mathcal {E}^\mathrm{DIAS}_{p}&= \frac{\min (p^{\mathrm{GDEM}})-\min (\mathscr {P})}{\min (\mathscr {P})},&\mathcal {E}^\mathrm{DIAS}_{Q}&= \frac{\min (Q^{\mathrm{GDEM}})-\min (\mathscr {Q})}{\max (\mathscr {Q})}, \end{aligned}$$
(97)

where \(p_i^{\mathrm{GDEM}}\) and \(Q_i^{\mathrm{GDEM}}\) are the results obtained using the analytical GDEM at a given spatial location and time point i (\(i=1,\ldots ,n\)). At the same spatial location and time point i, \(\mathscr {P}_i\) and \(\mathscr {Q}_i\) are either the pressure and flow given by the linear 1-D model or the cross-sectional averaged pressure and flow calculated from the 3-D model. The number of time points n was determined by the 3-D solution. \(\mathcal {E}^\mathrm{RMS}_{p}\) and \(\mathcal {E}^\mathrm{RMS}_{Q}\) are the root mean square relative errors for pressure and flow; \(\mathcal {E}^\mathrm{MAX}_{p}\) and \(\mathcal {E}^\mathrm{MAX}_{Q}\) are the maximum relative errors in pressure and flow; \(\mathcal {E}^{SYS}_{p}\) and \(\mathcal {E}^\mathrm{SYS}_{Q}\) are the errors in systolic pressure and flow; and \(\mathcal {E}^\mathrm{DIAS}_{p}\) and \(\mathcal {E}^\mathrm{DIAS}_{Q}\) are the errors in diastolic pressure and flow, respectively. Flow errors were normalized by the maximal flow over the cardiac cycle to avoid division by small values of the flow. For the quantities \(\Delta p\) and \(\Delta r\) we used the same metrics as for the flow rate. All error metrics were calculated over a single cardiac cycle, using the numerical 1-D and 3-D results in the periodic regime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores, J., Alastruey, J. & Corvera Poiré, E. A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network. Ann Biomed Eng 44, 3047–3068 (2016). https://doi.org/10.1007/s10439-016-1625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1625-3

Keywords

Navigation