Skip to main content
Log in

Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Hypertrophic chondrocytes play a critical role in endochondral bone formation as well as the progress of osteoarthritis (OA). An in vitro cartilage hypertrophy model can be used as a platform to study complex molecular mechanisms involved in these processes and screen new drugs for OA. To develop an in vitro cartilage hypertrophy model, we treated a tissue-engineered cartilage template, living hyaline cartilaginous graft (LhCG), with osteogenic medium for hypertrophic induction. In addition, endothelial progenitor cells (EPCs) were seeded onto LhCG constructs to mimic vascular invasion. The results showed that osteogenic treatment significantly inhibited the synthesis of endostatin in LhCG constructs and enhanced expression of hypertrophic marker-collagen type X (Col X) and osteogenic markers, as well as calcium deposition in vitro. Upon subcutaneous implantation, osteogenic medium-treated LhCG constructs all stained positive for Col X and showed significant calcium deposition and blood vessel invasion. Col X staining and calcium deposition were most obvious in osteogenic medium-treated only group, while there was no difference between EPC-seeded and non-seeded group. These results demonstrated that osteogenic treatment was of the primary factor to induce hypertrophic transition of LhCG constructs and this model may contribute to the establishment of an in vitro cartilage hypertrophy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Reference

  1. Asahara, T., T. Murohara, A. Sullivan, M. Silver, R. vanderZee, B. Witzenbichler, G. Schatteman, J. M. Isner, and M. Silver. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Bahney, C. S., D. P. Hu, T. Miclau, and R. S. Marcucio. The multifaceted role of the vasculature in endochondral fracture repair. Front. Endocrinol. (Lausanne) 6:4, 2015.

    Google Scholar 

  3. Bahney, C. S., D. P. Hu, A. J. Taylor, F. Ferro, H. M. Britz, B. Hallgrimsson, B. Johnstone, T. Miclau, and R. S. Marcucio. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J. Bone Miner. Res. 29:1269–1282, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang, N. J., C. F. Lam, C. C. Lin, W. L. Chen, C. F. Li, Y. T. Lin, and M. L. Yeh. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthr. Cartil. 21:1613–1622, 2013.

    Article  PubMed  Google Scholar 

  5. Chen-An, P., K. V. Andreassen, K. Henriksen, M. A. Karsdal, and A. C. Bay-Jensen. Investigation of chondrocyte hypertrophy and cartilage calcification in a full-depth articular cartilage explants model. Rheumatol. Int. 33:401–411, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Filip, A., A. Bianchi, D. Mainard, P. Lacolley, J. Magdalou, and N. Mercier. A simple two dimensional culture method to study the hypertrophic differentiation of rat articular chondrocytes. Bio-Med. Mater. Eng. 25:S87–S102, 2015.

    Google Scholar 

  7. Finkenzeller, G., N. Torio-Padron, A. Momeni, A. T. Mehlhorn, and G. B. Stark. In vitro angiogenesis properties of endothelial progenitor cells: a promising tool for vascularization of ex vivo engineered tissues. Tissue Eng. 13:1413–1420, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Freeman, F. E., M. G. Haugh, and L. M. McNamara. An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation. Tissue Eng. Part A 21:1320–1332, 2015.

    Article  CAS  PubMed  Google Scholar 

  9. Fu, W. L., Z. Xiang, F. G. Huang, Z. P. Gu, X. X. Yu, S. Q. Cen, G. Zhong, X. Duan, and M. Liu. Coculture of peripheral blood-derived mesenchymal stem cells and endothelial progenitor cells on strontium-doped calcium polyphosphate scaffolds to generate vascularized engineered bone. Tissue Eng. Part A 21:948–959, 2015.

    Article  CAS  PubMed  Google Scholar 

  10. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423:332–336, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Kusumbe A. P., S. K. Ramasamy and R. H. Adams. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone (vol 507, pg 323, 2014). Nature 513: 2014.

  12. Lau, T. T., L. Q. P. Lee, B. N. Vo, K. Su, and D. A. Wang. Inducing ossification in an engineered 3D scaffold-free living cartilage template. Biomaterials 33:8406–8417, 2012.

    Article  CAS  PubMed  Google Scholar 

  13. Little, D. G., M. Ramachandran, and A. Schindeler. The anabolic and catabolic responses in bone repair. J. Bone Joint Surg. Br. 89:425–433, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Ma, B., J. C. H. Leijten, L. Wu, M. Kip, C. A. van Blitterswijk, J. N. Post, and M. Karperien. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr. Cartil. 21:599–603, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Murasawa, S., and T. Asahara. Endothelial progenitor cells for vasculogenesis. Physiology 20:36–42, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Nuttelman, C. R., M. C. Tripodi, and K. S. Anseth. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. J. Biomed. Mater. Res. Part A 68A:773–782, 2004.

    Article  CAS  Google Scholar 

  17. OReilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285, 1997.

    Article  CAS  Google Scholar 

  18. Patra, D., and L. J. Sandell. Antiangiogenic and anticancer molecules in cartilage. Expert Rev. Mol. Med. 2012. doi:10.1017/erm.2012.3.

    PubMed  Google Scholar 

  19. Pesesse, L., C. Sanchez, J. P. Delcour, A. Bellahcene, C. Baudouin, P. Msika, and Y. Henrotin. Consequences of chondrocyte hypertrophy on osteoarthritic cartilage: potential effect on angiogenesis. Osteoarthr. Cartil. 21:1913–1923, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Pufe, T., W. J. Petersen, N. Miosge, M. B. Goldring, R. Mentlein, D. J. Varoga, and B. N. Tillmann. Endostatin/collagen XVIII—an inhibitor of angiogenesis—is expressed in cartilage and fibrocartilage. Matrix Biol. 23:267–276, 2004.

    Article  CAS  PubMed  Google Scholar 

  21. Ramasamy S. K., A. P. Kusumbe, L. Wang and R. H. Adams. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507: 376-+, 2014.

  22. Scotti, C., E. Piccinini, H. Takizawa, A. Todorov, P. Bourgine, A. Papadimitropoulos, A. Barbero, M. G. Manz, and I. Martin. Engineering of a functional bone organ through endochondral ossification. Proc. Natl. Acad. Sci. USA 110:3997–4002, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scotti, C., B. Tonnarelli, A. Papadimitropoulos, A. Scherberich, S. Schaeren, A. Schauerte, J. Lopez-Rios, R. Zeller, A. Barbero, and I. Martin. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc. Natl. Acad. Sci. USA 107:7251–7256, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheehy, E. J., T. Vinardell, M. E. Toner, C. T. Buckley, and D. J. Kelly. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation. PLoS One 9:e90716, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shi, Y., G. Kramer, A. Schroder, C. J. Kirkpatrick, A. Seekamp, H. Schmidt, and S. Fuchs. Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs. Eur. Cells Mater. 27:64–80, 2014.

    Article  CAS  Google Scholar 

  26. Sieminski, A. L., R. P. Hebbel, and K. J. Gooch. Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. Tissue Eng. 11:1332–1345, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Su, K., T. T. Lau, W. Y. Leong, Y. H. Gong, and D. A. Wang. Creating a living hyaline cartilage graft free from non-cartilaginous constituents: an intermediate role of a biomaterial scaffold. Adv. Funct. Mater. 22:972–978, 2012.

    Article  CAS  Google Scholar 

  28. Sun, M. M., and F. Beier. Chondrocyte hypertrophy in skeletal development, growth, and disease. Birth Defects Res. C Embryo Today 102:74–82, 2014.

    Article  CAS  PubMed  Google Scholar 

  29. Terramani, T. T., D. Eton, P. A. Bui, Y. Wang, F. A. Weaver, and H. Yu. Human macrovascular endothelial cells: optimization of culture conditions. Vitro Cell. Dev. Biol.-Anim. 36:125–132, 2000.

    Article  CAS  Google Scholar 

  30. Tsang, K. Y., D. Chan, and K. S. E. Cheah. Fate of growth plate hypertrophic chondrocytes: death or lineage extension? Dev. Growth Differ. 57:179–192, 2015.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, G., L. Zhu, N. Hou, Y. Lan, X. M. Wu, B. Zhou, Y. Teng, and X. Yang. Osteogenic fate of hypertrophic chondrocytes. Cell Res. 24:1266–1269, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, L., K. Y. Tsang, H. C. Tang, D. Chan, and K. S. E. Cheah. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl. Acad. Sci. USA 111:12097–12102, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoder, M. C. Human endothelial progenitor cells. Cold Spring Harbor Perspect. Med. 2:a006692, 2012.

    Article  Google Scholar 

  34. Zhou, X., K. von der Mark, S. Henry, W. Norton, H. Adams, and B. de Crombrugghe. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 10:e1004820, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zigdon-Giladi, H., T. Bick, D. Lewinson, and E. E. Machtei. Mesenchymal stem cells and endothelial progenitor cells stimulate bone regeneration and mineral density. J. Periodontol. 85:984–990, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Zigdon-Giladi, H., T. Bick, E. F. Morgan, D. Lewinson, and E. E. Machtei. Peripheral blood-derived endothelial progenitor cells enhance vertical bone formation. Clin. Implant Dent. Relat. Res. 17:83–92, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Academic Research Fund Tier 2 (AcRF: ARC1/13), Ministry of Education, Singapore and the Natural Science Foundation of China (51328301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Wang.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J.Y., Lim, S.Y., He, P.F. et al. Osteogenic Treatment Initiating a Tissue-Engineered Cartilage Template Hypertrophic Transition. Ann Biomed Eng 44, 2957–2970 (2016). https://doi.org/10.1007/s10439-016-1615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1615-5

Keywords

Navigation