Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage

Abstract

This review describes the prospects of applying modular assembly techniques and strategies for fabrication of advanced tissue engineered cartilage constructs. Articular cartilage is a tissue that has important functions in preserving and enabling locomotion. However, its limited intrinsic repair capacity and lack of current long-term clinical solutions makes it a candidate for repair or regeneration via tissue engineering strategies. Key advances in biofabrication and 3D bioprinting techniques allowing the specific placement of cells and tissues enable novel strategies to be adopted with increased chances of success. In particular, modular assembly, where separate biological components such as microtissue units, cellular building blocks or spheroids are combined with structural scaffold components to create a functional whole, offers potential as a new strategy for engineering of articular cartilage. Various modular assembly or bottom-up fabrication strategies have been investigated or applied for engineering of a range of tissues and cell types, however, modular approaches to cartilage engineering have been limited thus far. The integrative nature of many current approaches to engineering of articular cartilage means optimization of separate components (such as the scaffold and cells) is challenging, resulting in strategies which are less amenable to clinical scale-up or modification. In addition, current tissue engineering strategies may not replicate the function and complex structure of native tissue. This review outlines recent developments in fabrication of cellular or tissue modules as well as scaffold design where it impacts modular biofabrication, and discusses existing modular approaches applicable to articular cartilage regeneration and repair. Modular tissue assembly approaches allow complex hybrid constructs to be fabricated with direct control over both structural and cellular organization of pre-formed tissue units. The combination of modular assembly with automated biofabrication technologies may offer solutions to the development of optimal tissue-engineered cartilage constructs.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3

References

  1. 1.

    Abbott, A. Cell culture: biology’s new dimension. Nature 424:870–872, 2003.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Acharya, C., A. Adesida, P. Zajac, M. Mumme, J. Riesle, I. Martin, and A. Barbero. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J. Cell. Physiol. 227:88–97, 2012.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Alford, J. W., and B. J. Cole. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am. J. Sport. Med. 33:295–306, 2005.

    Article  Google Scholar 

  4. 4.

    Alsalameh, S., R. Amin, T. Gemba, and M. Lotz. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50:1522–1532, 2004.

    PubMed  Article  Google Scholar 

  5. 5.

    Babur, B. K., K. Futrega, W. B. Lott, T. J. Klein, J. Cooper-White, and M. R. Doran. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Cell Tissue Res. 361:755–768, 2015.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Babur, B. K., M. Kabiri, T. J. Klein, W. B. Lott, and M. R. Doran. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering. PLoS One 10:e0122250, 2015.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Barbero, A., S. Grogan, D. Schafer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12:476–484, 2004.

    PubMed  Article  Google Scholar 

  8. 8.

    Benders, K. E. M., P. R. van Weeren, S. F. Badylak, D. B. F. Saris, W. J. A. Dhert, and J. Malda. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31:169–176, 2013.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Bernstein, P., M. Dong, D. Corbeil, M. Gelinsky, K. P. Gunther, and S. Fickert. Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems. Biotechnol. Prog. 25:1146–1152, 2009.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Bian, L., D. Y. Zhai, R. L. Mauck, and J. A. Burdick. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng. Part A 17:1137–1145, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system. Jpn. J. Vet. Res. 53:127–139, 2006.

    PubMed  Google Scholar 

  12. 12.

    Bruzewicz, D. A., A. P. McGuigan, and G. M. Whitesides. Fabrication of a modular tissue construct in a microfluidic chip. Lab. Chip 8:663–671, 2008.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Buckwalter, J. A., V. C. Mow, and A. Ratcliffe. Restoration of injured or degenerated articular cartilage. J. Am. Acad Orthop. Surg. 2:192–201, 1994.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Butler, M. J., and M. V. Sefton. Cotransplantation of adipose-derived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice. Tissue Eng. Part A 18:1628–1641, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Caldwell, D. J., R. R. Rao, and J. P. Stegemann. Assembly of discrete collagen-chitosan microenvironments into multiphase tissue constructs. Adv. Healthc. Mater. 2:673–677, 2013.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Chitale, A. K., and R. C. Gupta. Product Design and Manufacturing. New Dheli: Prentice-Hall Of India Ltd, 2011.

    Google Scholar 

  17. 17.

    Croucher, L. J., A. Crawford, P. V. Hatton, R. G. G. Russell, and D. J. Buttle. Extracellular ATP and UTP stimulate cartilage proteoglycan and collagen accumulation in bovine articular chondrocyte pellet cultures. Biochim. Biophys. Acta Mol. Basis Dis. 1502:297–306, 2000.

    CAS  Article  Google Scholar 

  18. 18.

    Dalton, P. D., T. Woodfield, and D. W. Hutmacher. Snapshot: polymer scaffolds for tissue engineering (vol 30, pg 701, 2009). Biomaterials 30:2420, 2009.

    CAS  Article  Google Scholar 

  19. 19.

    Dang, P. N., L. D. Solorio, and E. Alsberg. Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery. Tissue Eng. Part A 20:3163–3175, 2014.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Dean, D. M., A. P. Napolitano, J. Youssef, and J. R. Morgan. Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J. 21:4005–4012, 2007.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Desroches, B. R., P. Zhang, B. R. Choi, M. E. King, A. E. Maldonado, W. Li, A. Rago, G. Liu, N. Nath, K. M. Hartmann, B. Yang, G. Koren, J. R. Morgan, and U. Mende. Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am. J. Physiol. Heart Circ. Physiol. 302:H2031–H2042, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Dikina, A. D., H. A. Strobel, B. P. Lai, M. W. Rolle, and E. Alsberg. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials 52:452–462, 2015.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Ding, C. H., P. Garnero, F. Cicuttini, F. Scott, H. Cooley, and G. Jones. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthr. Cartil. 13:198–205, 2005.

    PubMed  Article  Google Scholar 

  25. 25.

    Du, Y., M. Ghodousi, H. Qi, N. Haas, W. Xiao, and A. Khademhosseini. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 108:1693–1703, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Du, Y. A., E. Lo, S. Ali, and A. Khademhosseini. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. USA 105:9522–9527, 2008.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Emans, P. J., L. W. van Rhijn, T. J. M. Welting, A. Cremers, N. Wijnands, F. Spaapen, J. W. Voncken, and V. P. Shastri. Autologous engineering of cartilage. Proc. Natl. Acad. Sci. USA 107:3418–3423, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Filardo, G., E. Kon, A. Roffi, A. Di Martino, and M. Marcacci. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthrosc. J. Arthrosc. Relat. Surg. 29:174–186, 2013.

    Article  Google Scholar 

  29. 29.

    Frenkel, S. R., G. Bradica, J. H. Brekke, S. M. Goldman, K. Ieska, P. Issack, M. R. Bong, H. Tian, J. Gokhale, R. D. Coutts, and R. T. Kronengold. Regeneration of articular cartilage—evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr. Cartil. 13:798–807, 2005.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Furukawa, K. S., H. Suenaga, K. Toita, A. Numata, J. Tanaka, T. Ushida, Y. Sakai, and T. Tateishi. Rapid and large-scale formation of chondrocyte aggregates by rotational culture. Cell Transplant. 12:475–479, 2003.

    PubMed  Article  Google Scholar 

  31. 31.

    Gauvin, R., and A. Khademhosseini. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano 5:4258–4264, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Graff, R. D., E. R. Lazarowski, A. J. Banes, and G. M. Lee. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 43:1571–1579, 2000.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Groll, J., T. Boland, T. Blunk, J. A. Burdick, D.-W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, L. Moroni, M. Nakamura, W. Shu, S. Takeuchi, G. Vozzi, T. B. F. Woodfield, T. Xu, J. J. Yoo, and J. Malda. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001, 2016.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Gupta, R., N. Van Rooijen, and M. V. Sefton. Fate of endothelialized modular constructs implanted in an omental pouch in nude rats. Tissue Eng. Part A 15:2875–2887, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Hendriks, J., J. Riesle, and C. A. Van Blitterswijk. Effect of stratified culture compared to confluent culture in monolayer on proliferation and differentiation of human articular chondrocytes. Tissue Eng. 12:2397–2405, 2006.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Huang, C. Y. C., K. L. Hagar, L. E. Frost, Y. B. Sun, and H. S. Cheung. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323, 2004.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Huang, G.-S., P.-S. Hsieh, C.-S. Tseng, and S. Hsu. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2:1652–1660, 2014.

    CAS  Article  Google Scholar 

  38. 38.

    Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Im, G. I., N. H. Jung, and S. K. Tae. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng. 12:527–536, 2006.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Imparato, G., F. Urciuolo, C. Casale, and P. A. Netti. The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials 34:7851–7861, 2013.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Inamori, M., H. Mizumoto, and T. Kajiwara. Investigation of medium perfusion through scaffold-free tissue constructs using endothelial cell-covered spheroids in vitro. Biochem. Eng. J. 50:116–121, 2010.

    CAS  Article  Google Scholar 

  42. 42.

    Izadifar, Z., T. Chang, W. M. Kulyk, D. Chen, and B. F. Eames. Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng. Part C. Methods 22:173–188, 2016.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Jackson, D. W., P. A. Lalor, H. M. Aberman, and T. M. Simon. Spontaneous repair of full-thickness defects of articular cartilage in a goat model—A preliminary study. J. Bone Jt. Surg Am. 83A:53–64, 2001.

    Article  Google Scholar 

  44. 44.

    Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14:413–421, 2008.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kafienah, W., M. Jakob, O. Demarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: Comparison of adult nasal and articular chondrocytes. Tissue Eng. 8:817–826, 2002.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kafienah, W., S. Mistry, S. C. Dickinson, T. J. Sims, I. Learmonth, and A. P. Hollander. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 56:177–187, 2007.

    PubMed  Article  Google Scholar 

  47. 47.

    Kamrani, A. K., and S. M. Salhieh. Product Design for Modularity. New York: Springer, 2000.

    Google Scholar 

  48. 48.

    Kelm, J. M., V. Djonov, L. M. Ittner, D. Fluri, W. Born, S. P. Hoerstrup, and M. Fussenegger. Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng. 12:2151–2160, 2006.

    PubMed  Article  Google Scholar 

  49. 49.

    Kelm, J. M., and M. Fussenegger. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol. 22:195–202, 2004.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Kelm, J. M., and M. Fussenegger. Scaffold-free cell delivery for use in regenerative medicine. Adv. Drug. Deliv. Rev. 62:753–764, 2010.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Kelm, J. M., V. Lorber, J. G. Snedeker, D. Schmidt, A. Broggini-Tenzer, M. Weisstanner, B. Odermatt, A. Mol, G. Zund, and S. P. Hoerstrup. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J. Biotechnol. 148:46–55, 2010.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Khan, O. F., M. D. Chamberlain, and M. V. Sefton. Toward an in vitro vasculature: differentiation of mesenchymal stromal cells within an endothelial cell-seeded modular construct in a microfluidic flow chamber. Tissue Eng. Part A 18:744–756, 2012.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Kheir, E., T. Stapleton, D. Shaw, Z. Jin, J. Fisher, and E. Ingham. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J. Biomed. Mater. Res. Part A 99:283–294, 2011.

    Article  CAS  Google Scholar 

  54. 54.

    Kim, H. J., J. H. Lee, and G. I. Im. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J. Biomed. Mater. Res. Part A 92A:659–666, 2010.

    CAS  Google Scholar 

  55. 55.

    Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B Rev. 15:143–157, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Kock, L., C. C. van Donkelaar, and K. Ito. Tissue engineering of functional articular cartilage: the current status. Cell. Tissue Res. 347:613–627, 2011.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Lang, M., W. Wenhui, C. Xiaoqi, T. Woodfield, W. Wang, X. Q. Chen, and T. Woodfield. Integrated system for 3D assembly of bio-scaffolds and cells. In: IEEE international conference on automation science and engineering (CASE), 2010, pp. 786–791

  58. 58.

    Lang, M., C. Xiaoqi, W. Wenhui, and T. B. F. Woodfield. Injection system for cellular assembly of 3D bio-tissue engineered constructs. In: IEEE international conference on automation science and engineering (CASE), 2012, pp. 291–296

  59. 59.

    Lee, J.-S., J. M. Hong, J. W. Jung, J.-H. Shim, J.-H. Oh, and D.-W. Cho. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6:024103, 2014.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Lee, W. D., M. B. Hurtig, R. A. Kandel, and W. L. Stanford. Membrane culture of bone marrow stromal cells yields better tissue than pellet culture for engineering cartilage-bone substitute biphasic constructs in a two-step process. Tissue Eng. Part C Methods 17:939–948, 2011.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Lee, J. I., M. Sato, H. W. Kim, and J. Mochida. Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee. Eur. Cell. Mater. 22:275–290, 2011.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Leijten, J. C., N. Georgi, L. Wu, C. A. van Blitterswijk, and M. Karperien. Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng. Part B Rev. 19:31–40, 2013.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Lenas, P., F. P. Luyten, M. Doblare, E. Nicodemou-Lena, and A. E. Lanzara. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering. Artif. Organs 35:656–662, 2011.

    PubMed  Article  Google Scholar 

  64. 64.

    Leung, B. M., and M. V. Sefton. A modular tissue engineering construct containing smooth muscle cells and endothelial cells. Ann. Biomed. Eng. 35:2039–2049, 2007.

    PubMed  Article  Google Scholar 

  65. 65.

    Leung, B. M., and M. V. Sefton. A modular approach to cardiac tissue engineering. Tissue Eng. Part A 16:3207–3218, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Levato, R., J. Visser, J. A. Planell, E. Engel, J. Malda, and M. A. Mateos-Timoneda. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:035020, 2014.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Lin, Z., C. Willers, J. A. Xu, and M. H. Zheng. The chondrocyte: biology and clinical application. Tissue Eng. 12:1971–1984, 2006.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Liu, J. S., and Z. J. Gartner. Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol. 22:683–691, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Livoti, C. M., and J. R. Morgan. Self-assembly and tissue function of toroid-shaped minimal building units. Tissue Eng. A 16:2051–2061, 2010.

    CAS  Article  Google Scholar 

  70. 70.

    Lubke, C., J. Ringe, V. Krenn, G. Fernahl, S. Pelz, R. Kreusch-Brinker, M. Sittinger, and M. Paulitschke. Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model. Osteoarthr. Cartil. 13:478–487, 2005.

    PubMed  Article  Google Scholar 

  71. 71.

    Maiqin, C., W. Xiu, Y. Zhaoyang, Z. Yan, Z. Yan, and T. Wen-Song. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials 32:7532–7542, 2011.

    Article  CAS  Google Scholar 

  72. 72.

    Malda, J., C. A. van Blitterswijk, M. van Geffen, D. E. Martens, J. Tramper, J. Riesle, C. A. van Blitterswijk, J. Riesle, M. van Geffen, D. E. Martens, J. Tramper, and J. Riesle. Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthr. Cartil. 12:306–313, 2004.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Manning, W. K., and W. M. Bonner. Isolation and culture of chondrocytes from human adult articular cartilage. Arthritis Rheum. 10:235–239, 1967.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Marx, V. Cell culture: a better brew. Nature 496:253–258, 2013.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Mayer-Wagner, S., T. S. Schiergens, B. Sievers, D. Docheva, M. Schieker, O. B. Betz, V. Jansson, and P. E. Muller. Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors. Tissue Eng. Part A 16:513–521, 2010.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    McGuigan, A. P., and M. V. Sefton. Modular tissue engineering: fabrication of a gelatin-based construct. J. Tissue Eng. Regen. Med. 1:136–145, 2007.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    McGuigan, A. P., and M. V. Sefton. Design criteria for a modular tissue-engineered construct. Tissue Eng. 13:1079–1089, 2007.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    McGuigan, A. P., and M. V. Sefton. Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering. Tissue Eng. 13:1069–1078, 2007.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Meyer, U., and H. P. Wiesmann. Bone and Cartilage Engineering. New York: Springer, 2006.

    Google Scholar 

  80. 80.

    Meyer, U., H. P. Wiesmann, J. Libera, R. Depprich, C. Naujoks, and J. Handschel. Cartilage defect regeneration by ex vivo engineered autologous microtissue-preliminary results. Vivo (Brooklyn). 26:251–257, 2012.

    Google Scholar 

  81. 81.

    Miot, S., P. S. de Freitas, D. Wirz, A. U. Daniels, T. J. Sims, A. P. Hollander, P. Mainil-Varlet, M. Heberer, and I. Martin. Cartilage tissue engineering by expanded goat articular chondrocytes. J. Orthop. Res. 24:1078–1085, 2006.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Miyanishi, K., M. C. D. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 12:1419–1428, 2006.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Mollon, B., R. Kandel, J. Chahal, and J. Theodoropoulos. The clinical status of cartilage tissue regeneration in humans. Osteoarthr. Cartil. 21:1824–1833, 2013.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Murdoch, A. D., L. M. Grady, M. P. Ablett, T. Katopodi, R. S. Meadows, and T. E. Hardingham. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: Generation of Scaffold-free cartilage. Stem Cells 25:2786–2796, 2007.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Murdoch, A. D., T. E. Hardingham, D. R. Eyre, and R. J. Fernandes. The development of a mature collagen network in cartilage from human bone marrow stem cells in Transwell culture. Matrix Biol. 50:16–26, 2015.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Napolitano, A. P., P. Chai, D. M. Dean, and J. R. Morgan. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 13:2087–2094, 2007.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Nichol, J. W., and A. Khademhosseini. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Otto, I. A., F. P. W. Melchels, X. Zhao, M. A. Randolph, M. Kon, C. C. Breugem, and J. Malda. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 7:032001, 2015.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Palmiero, C., G. Imparato, F. Urciuolo, and P. Netti. Engineered dermal equivalent tissue in vitro by assembly of microtissue precursors. Acta Biomater. 6:2548–2553, 2010.

    PubMed  Article  Google Scholar 

  93. 93.

    Pang, Y., K. Montagne, M. Shinohara, K. Komori, and Y. Sakai. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres. Biofabrication 4:045004, 2012.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Park, K., J. S. Huang, F. Azar, R. L. Jin, B. H. Min, D. K. Han, and K. Hasty. Scaffold-free, engineered porcine cartilage construct for cartilage defect repair—In vitro and in vivo study. Artif. Organs 30:586–596, 2006.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Pati, F., J. Jang, D.-H. Ha, S. W. Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Penick, K. J., L. A. Solchaga, and J. F. Welter. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques 39:687–691, 2005.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391:S26–S33, 2001.

    Article  Google Scholar 

  98. 98.

    Qi, Y., Y. Du, W. Li, X. Dai, T. Zhao, and W. Yan. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg. Sport. Traumatol. Arthrosc. 22:1424–1433, 2012.

    Article  Google Scholar 

  99. 99.

    Qu, C., H. Lindeberg, J. H. Ylarinne, and M. J. Lammi. Five percent oxygen tension is not beneficial for neocartilage formation in scaffold-free cell cultures. Cell. Tissue Res. 348:109–117, 2012.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Raghunath, J., J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian. Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol. Appl. Biochem. 46:73–84, 2007.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Rago, A. P., D. M. Dean, and J. R. Morgan. Controlling cell position in complex heterotypic 3D microtissues by tissue fusion. Biotechnol. Bioeng. 102:1231–1241, 2009.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Rivron, N. C., J. Rouwkema, R. Truckenmuller, M. Karperien, J. De Boer, and C. A. Van Blitterswijk. Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 30:4851–4858, 2009.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Rotter, N., L. J. Bonassar, G. Tobias, M. Lebl, A. K. Roy, and C. A. Vacanti. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23:3087–3094, 2002.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Sakai, S., H. Mishima, T. Ishii, H. Akaogi, T. Yoshioka, Y. Ohyabu, F. Chang, N. Ochiai, and T. Uemura. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. J. Orthop. Res. 27:517–521, 2009.

    PubMed  Article  Google Scholar 

  105. 105.

    Sato, M., M. Yamato, K. Hamahashi, T. Okano, and J. Mochida. Articular cartilage regeneration using cell sheet technology. Anat. Rec. (Hoboken) 297:36–43, 2014.

    CAS  Article  Google Scholar 

  106. 106.

    Schon, B. S. Modular Assembly for In Vitro Investigation and Engineering of Articular Cartilage. Dunedin: University of Otago, 2014.

    Google Scholar 

  107. 107.

    Schon, B., K. Schrobback, M. van der Ven, S. Stroebel, G. Hooper, and T. Woodfield. Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell. Tissue Res. 347:629–642, 2012.

    CAS  Article  Google Scholar 

  108. 108.

    Schrobback, K., T. J. Klein, and T. B. F. Woodfield. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Tissue Eng. Part A 21:1785–1794, 2015.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Schubert, T., S. Anders, E. Neumann, J. Scholmerich, F. Hofstadter, J. Grifka, U. Muller-Ladner, J. Libera, and J. Schedel. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int. J. Mol. Med. 23:455–460, 2009.

    CAS  PubMed  Google Scholar 

  110. 110.

    Schuurman, W., D. Gawlitta, T. J. Klein, W. ten Hoope, M. H. P. van Rijen, W. J. A. Dhert, P. R. van Weeren, and J. Malda. Zonal chondrocyte subpopulations reacquire zone-specific characteristics during in vitro redifferentiation. Am. J. Sports Med. 37:97S–104S, 2009.

    PubMed  Article  Google Scholar 

  111. 111.

    Schuurman, W., E. B. Harimulyo, D. Gawlitta, T. B. Woodfield, W. J. Dhert, P. R. van Weeren, and J. Malda. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics. J. Tissue Eng. Regen. Med. 2013. doi:10.1002/term.1726.

    PubMed  Google Scholar 

  112. 112.

    Shim, J.-H., K.-M. Jang, S. K. Hahn, J. Y. Park, H. Jung, K. Oh, K. M. Park, J. Yeom, S. H. Park, S. W. Kim, J. H. Wang, K. Kim, and D.-W. Cho. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 8:14102, 2016.

    Article  CAS  Google Scholar 

  113. 113.

    Shoichet, M. S. Polymer scaffolds for biomaterials applications. Macromolecules 43:581–591, 2010.

    CAS  Article  Google Scholar 

  114. 114.

    Siclari, A., G. Mascaro, C. Gentili, R. Cancedda, and E. Boux. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin. Orthop. Relat. Res. 470:910–919, 2012.

    PubMed  Article  Google Scholar 

  115. 115.

    Solursh, M. Formation of cartilage tissue in vitro. J. Cell. Biochem. 45:258–260, 1991.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Spiller, K. L., S. A. Maher, and A. M. Lowman. Hydrogels for the repair of articular cartilage defects. Tissue Eng. Part B Rev. 17:281–299, 2011.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Steinberg, M. S. On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc. Natl. Acad. Sci. USA 48:1769–1776, 1962.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Steinert, A. F., S. C. Ghivizzani, A. Rethwilm, R. S. Tuan, C. H. Evans, and U. Noth. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther. 9:213, 2007.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Sutherland, A. J., G. L. Converse, R. A. Hopkins, and M. S. Detamore. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv. Healthc. Mater. 4:29–39, 2015.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Tare, R. S., D. Howard, J. C. Pound, H. I. Roach, and R. O. C. Oreffo. Tissue engineering strategies for cartilage generation—micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Biochem. Biophys. Res. Commun. 333:609–621, 2005.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Tatman, P. D., W. Gerull, S. Sweeney-Easter, J. I. Davis, A. O. Gee, and D.-H. Kim. Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng. Part B. Rev. 21:543–559, 2015.

    PubMed  Article  Google Scholar 

  122. 122.

    Tay, A. G., J. Farhadi, R. Suetterlin, G. Pierer, M. Heberer, and I. Martin. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng. 10:762–770, 2004.

    PubMed  Article  Google Scholar 

  123. 123.

    Teixeira, L. S. M., J. C. Leijten, J. Sobral, R. Jin, A. A. van Apeldoorn, J. Feijen, C. van Blitterswijk, P. J. Dijkstra, and M. Karperien. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cell. Mater. 23:387–399, 2012.

    Article  Google Scholar 

  124. 124.

    van Osch, G., W. Marijnissen, S. W. van der Veen, and H. L. Verwoerd-Verhoef. The potency of culture-expanded nasal septum chondrocytes for tissue engineering of cartilage. Am. J. Rhinol. 15:187–192, 2001.

    PubMed  Article  Google Scholar 

  125. 125.

    Vidal, M. A., S. O. Robinson, M. J. Lopez, D. B. Paulsen, O. Borkhsenious, J. R. Johnson, R. M. Moore, and J. M. Gimble. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet. Surg. 37:713–724, 2008.

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Visser, J., F. P. W. Melchels, J. E. Jeon, E. M. van Bussel, L. S. Kimpton, H. M. Byrne, W. J. A. Dhert, P. D. Dalton, D. W. Hutmacher, and J. Malda. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun. 6:6933, 2015.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Visser, J., B. Peters, T. J. Burger, J. Boomstra, W. J. Dhert, F. P. Melchels, and J. Malda. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:35007, 2013.

    Article  CAS  Google Scholar 

  128. 128.

    Welter, J. F., L. A. Solchaga, and K. J. Penick. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay. Biotechniques 42:732–737, 2007.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    West, A. R., N. Zaman, D. J. Cole, M. J. Walker, W. R. Legant, T. Boudou, C. S. Chen, J. T. Favreau, G. R. Gaudette, E. A. Cowley, and G. N. Maksym. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 304:L4–L16, 2013.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Woodfield, T. B. F., J. M. Bezemer, J. S. Pieper, C. A. van Blitterswijk, and J. Riesle. Scaffolds for tissue engineering of cartilage. Crit. Rev. Eukaryot. Gene Expr. 12:209–236, 2002.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Woodfield, T. B. F., M. Guggenheim, B. von Rechenberg, J. Riesle, C. A. van Blitterswijk, and V. Wedler. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 42:485–497, 2009.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Woodfield, T. B. F., S. Miot, I. Martin, C. A. van Blitterswijk, and J. Riesle. The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials 27:1043–1053, 2006.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Woodfield, T. B. F., C. A. Van Blitterswijk, J. De Wijn, T. J. Sims, A. P. Hollander, and J. Riesle. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng. 11:1297–1311, 2005.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. Zhao, J. J. Yoo, and A. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001, 2013.

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Yuhas, J. M., A. P. Li, A. O. Martinez, and A. J. Ladman. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 37:3639–3643, 1977.

    CAS  PubMed  Google Scholar 

  136. 136.

    Zhang, Z. J., J. M. McCaffery, R. G. S. Spencer, and C. A. Francomano. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. J. Anat. 205:229–237, 2004.

    PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Zimmermann, W. H., I. Melnychenko, G. Wasmeier, M. Didie, H. Naito, U. Nixdorff, A. Hess, L. Budinsky, K. Brune, B. Michaelis, S. Dhein, A. Schwoerer, H. Ehmke, and T. Eschenhagen. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12:452–458, 2006.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Zorlutuna, P., N. Annabi, G. Camci-Unal, M. Nikkhah, J. M. Cha, J. W. Nichol, A. Manbachi, H. Bae, S. Chen, and A. Khademhosseini. Microfabricated biomaterials for engineering 3d tissues. Adv. Mater. 24:1782–1804, 2012.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the Royal Society of New Zealand Rutherford Discovery Fellowship (TW), EU/FP7 ‘skelGEN’ consortium under Grant Agreement No [318553], and the Canterbury Orthopaedic Research Trust (BS).

Conflict of interest

The authors declare no conflict of interest

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. B. F. Woodfield.

Additional information

Associate Editor Jos Malda oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schon, B.S., Hooper, G.J. & Woodfield, T.B.F. Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Ann Biomed Eng 45, 100–114 (2017). https://doi.org/10.1007/s10439-016-1609-3

Download citation

Keywords

  • Biofabrication
  • 3D bioprinting
  • Tissue assembly
  • Cartilage tissue engineering
  • Cell aggregate
  • Microtissue
  • Hydrogel
  • Microfabrication
  • Scaffold design