Advertisement

Annals of Biomedical Engineering

, Volume 45, Issue 1, pp 100–114 | Cite as

Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage

  • B. S. Schon
  • G. J. Hooper
  • T. B. F. WoodfieldEmail author
Additive Manufacturing of Biomaterials, Tissues, and Organs

Abstract

This review describes the prospects of applying modular assembly techniques and strategies for fabrication of advanced tissue engineered cartilage constructs. Articular cartilage is a tissue that has important functions in preserving and enabling locomotion. However, its limited intrinsic repair capacity and lack of current long-term clinical solutions makes it a candidate for repair or regeneration via tissue engineering strategies. Key advances in biofabrication and 3D bioprinting techniques allowing the specific placement of cells and tissues enable novel strategies to be adopted with increased chances of success. In particular, modular assembly, where separate biological components such as microtissue units, cellular building blocks or spheroids are combined with structural scaffold components to create a functional whole, offers potential as a new strategy for engineering of articular cartilage. Various modular assembly or bottom-up fabrication strategies have been investigated or applied for engineering of a range of tissues and cell types, however, modular approaches to cartilage engineering have been limited thus far. The integrative nature of many current approaches to engineering of articular cartilage means optimization of separate components (such as the scaffold and cells) is challenging, resulting in strategies which are less amenable to clinical scale-up or modification. In addition, current tissue engineering strategies may not replicate the function and complex structure of native tissue. This review outlines recent developments in fabrication of cellular or tissue modules as well as scaffold design where it impacts modular biofabrication, and discusses existing modular approaches applicable to articular cartilage regeneration and repair. Modular tissue assembly approaches allow complex hybrid constructs to be fabricated with direct control over both structural and cellular organization of pre-formed tissue units. The combination of modular assembly with automated biofabrication technologies may offer solutions to the development of optimal tissue-engineered cartilage constructs.

Keywords

Biofabrication 3D bioprinting Tissue assembly Cartilage tissue engineering Cell aggregate Microtissue Hydrogel Microfabrication Scaffold design 

Notes

Acknowledgments

The authors would like to acknowledge financial support from the Royal Society of New Zealand Rutherford Discovery Fellowship (TW), EU/FP7 ‘skelGEN’ consortium under Grant Agreement No [318553], and the Canterbury Orthopaedic Research Trust (BS).

Conflict of interest

The authors declare no conflict of interest

References

  1. 1.
    Abbott, A. Cell culture: biology’s new dimension. Nature 424:870–872, 2003.PubMedCrossRefGoogle Scholar
  2. 2.
    Acharya, C., A. Adesida, P. Zajac, M. Mumme, J. Riesle, I. Martin, and A. Barbero. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J. Cell. Physiol. 227:88–97, 2012.PubMedCrossRefGoogle Scholar
  3. 3.
    Alford, J. W., and B. J. Cole. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am. J. Sport. Med. 33:295–306, 2005.CrossRefGoogle Scholar
  4. 4.
    Alsalameh, S., R. Amin, T. Gemba, and M. Lotz. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50:1522–1532, 2004.PubMedCrossRefGoogle Scholar
  5. 5.
    Babur, B. K., K. Futrega, W. B. Lott, T. J. Klein, J. Cooper-White, and M. R. Doran. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue. Cell Tissue Res. 361:755–768, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Babur, B. K., M. Kabiri, T. J. Klein, W. B. Lott, and M. R. Doran. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering. PLoS One 10:e0122250, 2015.PubMedCrossRefGoogle Scholar
  7. 7.
    Barbero, A., S. Grogan, D. Schafer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12:476–484, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Benders, K. E. M., P. R. van Weeren, S. F. Badylak, D. B. F. Saris, W. J. A. Dhert, and J. Malda. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31:169–176, 2013.PubMedCrossRefGoogle Scholar
  9. 9.
    Bernstein, P., M. Dong, D. Corbeil, M. Gelinsky, K. P. Gunther, and S. Fickert. Pellet culture elicits superior chondrogenic redifferentiation than alginate-based systems. Biotechnol. Prog. 25:1146–1152, 2009.PubMedCrossRefGoogle Scholar
  10. 10.
    Bian, L., D. Y. Zhai, R. L. Mauck, and J. A. Burdick. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng. Part A 17:1137–1145, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. Gene expression profile of bovine bone marrow mesenchymal stem cell during spontaneous chondrogenic differentiation in pellet culture system. Jpn. J. Vet. Res. 53:127–139, 2006.PubMedGoogle Scholar
  12. 12.
    Bruzewicz, D. A., A. P. McGuigan, and G. M. Whitesides. Fabrication of a modular tissue construct in a microfluidic chip. Lab. Chip 8:663–671, 2008.PubMedCrossRefGoogle Scholar
  13. 13.
    Buckwalter, J. A., V. C. Mow, and A. Ratcliffe. Restoration of injured or degenerated articular cartilage. J. Am. Acad Orthop. Surg. 2:192–201, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Butler, M. J., and M. V. Sefton. Cotransplantation of adipose-derived mesenchymal stromal cells and endothelial cells in a modular construct drives vascularization in SCID/bg mice. Tissue Eng. Part A 18:1628–1641, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Caldwell, D. J., R. R. Rao, and J. P. Stegemann. Assembly of discrete collagen-chitosan microenvironments into multiphase tissue constructs. Adv. Healthc. Mater. 2:673–677, 2013.PubMedCrossRefGoogle Scholar
  16. 16.
    Chitale, A. K., and R. C. Gupta. Product Design and Manufacturing. New Dheli: Prentice-Hall Of India Ltd, 2011.Google Scholar
  17. 17.
    Croucher, L. J., A. Crawford, P. V. Hatton, R. G. G. Russell, and D. J. Buttle. Extracellular ATP and UTP stimulate cartilage proteoglycan and collagen accumulation in bovine articular chondrocyte pellet cultures. Biochim. Biophys. Acta Mol. Basis Dis. 1502:297–306, 2000.CrossRefGoogle Scholar
  18. 18.
    Dalton, P. D., T. Woodfield, and D. W. Hutmacher. Snapshot: polymer scaffolds for tissue engineering (vol 30, pg 701, 2009). Biomaterials 30:2420, 2009.CrossRefGoogle Scholar
  19. 19.
    Dang, P. N., L. D. Solorio, and E. Alsberg. Driving cartilage formation in high-density human adipose-derived stem cell aggregate and sheet constructs without exogenous growth factor delivery. Tissue Eng. Part A 20:3163–3175, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.PubMedCrossRefGoogle Scholar
  21. 21.
    Dean, D. M., A. P. Napolitano, J. Youssef, and J. R. Morgan. Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J. 21:4005–4012, 2007.PubMedCrossRefGoogle Scholar
  22. 22.
    Desroches, B. R., P. Zhang, B. R. Choi, M. E. King, A. E. Maldonado, W. Li, A. Rago, G. Liu, N. Nath, K. M. Hartmann, B. Yang, G. Koren, J. R. Morgan, and U. Mende. Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am. J. Physiol. Heart Circ. Physiol. 302:H2031–H2042, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dikina, A. D., H. A. Strobel, B. P. Lai, M. W. Rolle, and E. Alsberg. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials 52:452–462, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ding, C. H., P. Garnero, F. Cicuttini, F. Scott, H. Cooley, and G. Jones. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthr. Cartil. 13:198–205, 2005.PubMedCrossRefGoogle Scholar
  25. 25.
    Du, Y., M. Ghodousi, H. Qi, N. Haas, W. Xiao, and A. Khademhosseini. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng. 108:1693–1703, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Du, Y. A., E. Lo, S. Ali, and A. Khademhosseini. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Natl. Acad. Sci. USA 105:9522–9527, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Emans, P. J., L. W. van Rhijn, T. J. M. Welting, A. Cremers, N. Wijnands, F. Spaapen, J. W. Voncken, and V. P. Shastri. Autologous engineering of cartilage. Proc. Natl. Acad. Sci. USA 107:3418–3423, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Filardo, G., E. Kon, A. Roffi, A. Di Martino, and M. Marcacci. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthrosc. J. Arthrosc. Relat. Surg. 29:174–186, 2013.CrossRefGoogle Scholar
  29. 29.
    Frenkel, S. R., G. Bradica, J. H. Brekke, S. M. Goldman, K. Ieska, P. Issack, M. R. Bong, H. Tian, J. Gokhale, R. D. Coutts, and R. T. Kronengold. Regeneration of articular cartilage—evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr. Cartil. 13:798–807, 2005.PubMedCrossRefGoogle Scholar
  30. 30.
    Furukawa, K. S., H. Suenaga, K. Toita, A. Numata, J. Tanaka, T. Ushida, Y. Sakai, and T. Tateishi. Rapid and large-scale formation of chondrocyte aggregates by rotational culture. Cell Transplant. 12:475–479, 2003.PubMedCrossRefGoogle Scholar
  31. 31.
    Gauvin, R., and A. Khademhosseini. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano 5:4258–4264, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Graff, R. D., E. R. Lazarowski, A. J. Banes, and G. M. Lee. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 43:1571–1579, 2000.PubMedCrossRefGoogle Scholar
  33. 33.
    Groll, J., T. Boland, T. Blunk, J. A. Burdick, D.-W. Cho, P. D. Dalton, B. Derby, G. Forgacs, Q. Li, V. A. Mironov, L. Moroni, M. Nakamura, W. Shu, S. Takeuchi, G. Vozzi, T. B. F. Woodfield, T. Xu, J. J. Yoo, and J. Malda. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8:013001, 2016.PubMedCrossRefGoogle Scholar
  34. 34.
    Gupta, R., N. Van Rooijen, and M. V. Sefton. Fate of endothelialized modular constructs implanted in an omental pouch in nude rats. Tissue Eng. Part A 15:2875–2887, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hendriks, J., J. Riesle, and C. A. Van Blitterswijk. Effect of stratified culture compared to confluent culture in monolayer on proliferation and differentiation of human articular chondrocytes. Tissue Eng. 12:2397–2405, 2006.PubMedCrossRefGoogle Scholar
  36. 36.
    Huang, C. Y. C., K. L. Hagar, L. E. Frost, Y. B. Sun, and H. S. Cheung. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323, 2004.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang, G.-S., P.-S. Hsieh, C.-S. Tseng, and S. Hsu. The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomater. Sci. 2:1652–1660, 2014.CrossRefGoogle Scholar
  38. 38.
    Hutmacher, D. W., M. Sittinger, and M. V. Risbud. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22:354–362, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Im, G. I., N. H. Jung, and S. K. Tae. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng. 12:527–536, 2006.PubMedCrossRefGoogle Scholar
  40. 40.
    Imparato, G., F. Urciuolo, C. Casale, and P. A. Netti. The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials 34:7851–7861, 2013.PubMedCrossRefGoogle Scholar
  41. 41.
    Inamori, M., H. Mizumoto, and T. Kajiwara. Investigation of medium perfusion through scaffold-free tissue constructs using endothelial cell-covered spheroids in vitro. Biochem. Eng. J. 50:116–121, 2010.CrossRefGoogle Scholar
  42. 42.
    Izadifar, Z., T. Chang, W. M. Kulyk, D. Chen, and B. F. Eames. Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng. Part C. Methods 22:173–188, 2016.PubMedCrossRefGoogle Scholar
  43. 43.
    Jackson, D. W., P. A. Lalor, H. M. Aberman, and T. M. Simon. Spontaneous repair of full-thickness defects of articular cartilage in a goat model—A preliminary study. J. Bone Jt. Surg Am. 83A:53–64, 2001.CrossRefGoogle Scholar
  44. 44.
    Jakab, K., C. Norotte, B. Damon, F. Marga, A. Neagu, C. L. Besch-Williford, A. Kachurin, K. H. Church, H. Park, V. Mironov, R. Markwald, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 14:413–421, 2008.PubMedCrossRefGoogle Scholar
  45. 45.
    Kafienah, W., M. Jakob, O. Demarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: Comparison of adult nasal and articular chondrocytes. Tissue Eng. 8:817–826, 2002.PubMedCrossRefGoogle Scholar
  46. 46.
    Kafienah, W., S. Mistry, S. C. Dickinson, T. J. Sims, I. Learmonth, and A. P. Hollander. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 56:177–187, 2007.PubMedCrossRefGoogle Scholar
  47. 47.
    Kamrani, A. K., and S. M. Salhieh. Product Design for Modularity. New York: Springer, 2000.CrossRefGoogle Scholar
  48. 48.
    Kelm, J. M., V. Djonov, L. M. Ittner, D. Fluri, W. Born, S. P. Hoerstrup, and M. Fussenegger. Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng. 12:2151–2160, 2006.PubMedCrossRefGoogle Scholar
  49. 49.
    Kelm, J. M., and M. Fussenegger. Microscale tissue engineering using gravity-enforced cell assembly. Trends Biotechnol. 22:195–202, 2004.PubMedCrossRefGoogle Scholar
  50. 50.
    Kelm, J. M., and M. Fussenegger. Scaffold-free cell delivery for use in regenerative medicine. Adv. Drug. Deliv. Rev. 62:753–764, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    Kelm, J. M., V. Lorber, J. G. Snedeker, D. Schmidt, A. Broggini-Tenzer, M. Weisstanner, B. Odermatt, A. Mol, G. Zund, and S. P. Hoerstrup. A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J. Biotechnol. 148:46–55, 2010.PubMedCrossRefGoogle Scholar
  52. 52.
    Khan, O. F., M. D. Chamberlain, and M. V. Sefton. Toward an in vitro vasculature: differentiation of mesenchymal stromal cells within an endothelial cell-seeded modular construct in a microfluidic flow chamber. Tissue Eng. Part A 18:744–756, 2012.PubMedCrossRefGoogle Scholar
  53. 53.
    Kheir, E., T. Stapleton, D. Shaw, Z. Jin, J. Fisher, and E. Ingham. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J. Biomed. Mater. Res. Part A 99:283–294, 2011.CrossRefGoogle Scholar
  54. 54.
    Kim, H. J., J. H. Lee, and G. I. Im. Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J. Biomed. Mater. Res. Part A 92A:659–666, 2010.Google Scholar
  55. 55.
    Klein, T. J., J. Malda, R. L. Sah, and D. W. Hutmacher. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B Rev. 15:143–157, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kock, L., C. C. van Donkelaar, and K. Ito. Tissue engineering of functional articular cartilage: the current status. Cell. Tissue Res. 347:613–627, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lang, M., W. Wenhui, C. Xiaoqi, T. Woodfield, W. Wang, X. Q. Chen, and T. Woodfield. Integrated system for 3D assembly of bio-scaffolds and cells. In: IEEE international conference on automation science and engineering (CASE), 2010, pp. 786–791Google Scholar
  58. 58.
    Lang, M., C. Xiaoqi, W. Wenhui, and T. B. F. Woodfield. Injection system for cellular assembly of 3D bio-tissue engineered constructs. In: IEEE international conference on automation science and engineering (CASE), 2012, pp. 291–296Google Scholar
  59. 59.
    Lee, J.-S., J. M. Hong, J. W. Jung, J.-H. Shim, J.-H. Oh, and D.-W. Cho. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6:024103, 2014.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee, W. D., M. B. Hurtig, R. A. Kandel, and W. L. Stanford. Membrane culture of bone marrow stromal cells yields better tissue than pellet culture for engineering cartilage-bone substitute biphasic constructs in a two-step process. Tissue Eng. Part C Methods 17:939–948, 2011.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee, J. I., M. Sato, H. W. Kim, and J. Mochida. Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee. Eur. Cell. Mater. 22:275–290, 2011.PubMedCrossRefGoogle Scholar
  62. 62.
    Leijten, J. C., N. Georgi, L. Wu, C. A. van Blitterswijk, and M. Karperien. Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng. Part B Rev. 19:31–40, 2013.PubMedCrossRefGoogle Scholar
  63. 63.
    Lenas, P., F. P. Luyten, M. Doblare, E. Nicodemou-Lena, and A. E. Lanzara. Modularity in developmental biology and artificial organs: a missing concept in tissue engineering. Artif. Organs 35:656–662, 2011.PubMedCrossRefGoogle Scholar
  64. 64.
    Leung, B. M., and M. V. Sefton. A modular tissue engineering construct containing smooth muscle cells and endothelial cells. Ann. Biomed. Eng. 35:2039–2049, 2007.PubMedCrossRefGoogle Scholar
  65. 65.
    Leung, B. M., and M. V. Sefton. A modular approach to cardiac tissue engineering. Tissue Eng. Part A 16:3207–3218, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Levato, R., J. Visser, J. A. Planell, E. Engel, J. Malda, and M. A. Mateos-Timoneda. Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:035020, 2014.PubMedCrossRefGoogle Scholar
  67. 67.
    Lin, Z., C. Willers, J. A. Xu, and M. H. Zheng. The chondrocyte: biology and clinical application. Tissue Eng. 12:1971–1984, 2006.PubMedCrossRefGoogle Scholar
  68. 68.
    Liu, J. S., and Z. J. Gartner. Directing the assembly of spatially organized multicomponent tissues from the bottom up. Trends Cell Biol. 22:683–691, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Livoti, C. M., and J. R. Morgan. Self-assembly and tissue function of toroid-shaped minimal building units. Tissue Eng. A 16:2051–2061, 2010.CrossRefGoogle Scholar
  70. 70.
    Lubke, C., J. Ringe, V. Krenn, G. Fernahl, S. Pelz, R. Kreusch-Brinker, M. Sittinger, and M. Paulitschke. Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model. Osteoarthr. Cartil. 13:478–487, 2005.PubMedCrossRefGoogle Scholar
  71. 71.
    Maiqin, C., W. Xiu, Y. Zhaoyang, Z. Yan, Z. Yan, and T. Wen-Song. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials 32:7532–7542, 2011.CrossRefGoogle Scholar
  72. 72.
    Malda, J., C. A. van Blitterswijk, M. van Geffen, D. E. Martens, J. Tramper, J. Riesle, C. A. van Blitterswijk, J. Riesle, M. van Geffen, D. E. Martens, J. Tramper, and J. Riesle. Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthr. Cartil. 12:306–313, 2004.PubMedCrossRefGoogle Scholar
  73. 73.
    Manning, W. K., and W. M. Bonner. Isolation and culture of chondrocytes from human adult articular cartilage. Arthritis Rheum. 10:235–239, 1967.PubMedCrossRefGoogle Scholar
  74. 74.
    Marx, V. Cell culture: a better brew. Nature 496:253–258, 2013.PubMedCrossRefGoogle Scholar
  75. 75.
    Mayer-Wagner, S., T. S. Schiergens, B. Sievers, D. Docheva, M. Schieker, O. B. Betz, V. Jansson, and P. E. Muller. Membrane-based cultures generate scaffold-free neocartilage in vitro: influence of growth factors. Tissue Eng. Part A 16:513–521, 2010.PubMedCrossRefGoogle Scholar
  76. 76.
    McGuigan, A. P., and M. V. Sefton. Modular tissue engineering: fabrication of a gelatin-based construct. J. Tissue Eng. Regen. Med. 1:136–145, 2007.PubMedCrossRefGoogle Scholar
  77. 77.
    McGuigan, A. P., and M. V. Sefton. Design criteria for a modular tissue-engineered construct. Tissue Eng. 13:1079–1089, 2007.PubMedCrossRefGoogle Scholar
  78. 78.
    McGuigan, A. P., and M. V. Sefton. Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering. Tissue Eng. 13:1069–1078, 2007.PubMedCrossRefGoogle Scholar
  79. 79.
    Meyer, U., and H. P. Wiesmann. Bone and Cartilage Engineering. New York: Springer, 2006.Google Scholar
  80. 80.
    Meyer, U., H. P. Wiesmann, J. Libera, R. Depprich, C. Naujoks, and J. Handschel. Cartilage defect regeneration by ex vivo engineered autologous microtissue-preliminary results. Vivo (Brooklyn). 26:251–257, 2012.Google Scholar
  81. 81.
    Miot, S., P. S. de Freitas, D. Wirz, A. U. Daniels, T. J. Sims, A. P. Hollander, P. Mainil-Varlet, M. Heberer, and I. Martin. Cartilage tissue engineering by expanded goat articular chondrocytes. J. Orthop. Res. 24:1078–1085, 2006.PubMedCrossRefGoogle Scholar
  82. 82.
    Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Miyanishi, K., M. C. D. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 12:1419–1428, 2006.PubMedCrossRefGoogle Scholar
  84. 84.
    Mollon, B., R. Kandel, J. Chahal, and J. Theodoropoulos. The clinical status of cartilage tissue regeneration in humans. Osteoarthr. Cartil. 21:1824–1833, 2013.PubMedCrossRefGoogle Scholar
  85. 85.
    Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Murdoch, A. D., L. M. Grady, M. P. Ablett, T. Katopodi, R. S. Meadows, and T. E. Hardingham. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: Generation of Scaffold-free cartilage. Stem Cells 25:2786–2796, 2007.PubMedCrossRefGoogle Scholar
  87. 87.
    Murdoch, A. D., T. E. Hardingham, D. R. Eyre, and R. J. Fernandes. The development of a mature collagen network in cartilage from human bone marrow stem cells in Transwell culture. Matrix Biol. 50:16–26, 2015.PubMedCrossRefGoogle Scholar
  88. 88.
    Napolitano, A. P., P. Chai, D. M. Dean, and J. R. Morgan. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Tissue Eng. 13:2087–2094, 2007.PubMedCrossRefGoogle Scholar
  89. 89.
    Nichol, J. W., and A. Khademhosseini. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Otto, I. A., F. P. W. Melchels, X. Zhao, M. A. Randolph, M. Kon, C. C. Breugem, and J. Malda. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 7:032001, 2015.PubMedCrossRefGoogle Scholar
  92. 92.
    Palmiero, C., G. Imparato, F. Urciuolo, and P. Netti. Engineered dermal equivalent tissue in vitro by assembly of microtissue precursors. Acta Biomater. 6:2548–2553, 2010.PubMedCrossRefGoogle Scholar
  93. 93.
    Pang, Y., K. Montagne, M. Shinohara, K. Komori, and Y. Sakai. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres. Biofabrication 4:045004, 2012.PubMedCrossRefGoogle Scholar
  94. 94.
    Park, K., J. S. Huang, F. Azar, R. L. Jin, B. H. Min, D. K. Han, and K. Hasty. Scaffold-free, engineered porcine cartilage construct for cartilage defect repair—In vitro and in vivo study. Artif. Organs 30:586–596, 2006.PubMedCrossRefGoogle Scholar
  95. 95.
    Pati, F., J. Jang, D.-H. Ha, S. W. Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Penick, K. J., L. A. Solchaga, and J. F. Welter. High-throughput aggregate culture system to assess the chondrogenic potential of mesenchymal stem cells. Biotechniques 39:687–691, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391:S26–S33, 2001.CrossRefGoogle Scholar
  98. 98.
    Qi, Y., Y. Du, W. Li, X. Dai, T. Zhao, and W. Yan. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg. Sport. Traumatol. Arthrosc. 22:1424–1433, 2012.CrossRefGoogle Scholar
  99. 99.
    Qu, C., H. Lindeberg, J. H. Ylarinne, and M. J. Lammi. Five percent oxygen tension is not beneficial for neocartilage formation in scaffold-free cell cultures. Cell. Tissue Res. 348:109–117, 2012.PubMedCrossRefGoogle Scholar
  100. 100.
    Raghunath, J., J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian. Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol. Appl. Biochem. 46:73–84, 2007.PubMedCrossRefGoogle Scholar
  101. 101.
    Rago, A. P., D. M. Dean, and J. R. Morgan. Controlling cell position in complex heterotypic 3D microtissues by tissue fusion. Biotechnol. Bioeng. 102:1231–1241, 2009.PubMedCrossRefGoogle Scholar
  102. 102.
    Rivron, N. C., J. Rouwkema, R. Truckenmuller, M. Karperien, J. De Boer, and C. A. Van Blitterswijk. Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 30:4851–4858, 2009.PubMedCrossRefGoogle Scholar
  103. 103.
    Rotter, N., L. J. Bonassar, G. Tobias, M. Lebl, A. K. Roy, and C. A. Vacanti. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23:3087–3094, 2002.PubMedCrossRefGoogle Scholar
  104. 104.
    Sakai, S., H. Mishima, T. Ishii, H. Akaogi, T. Yoshioka, Y. Ohyabu, F. Chang, N. Ochiai, and T. Uemura. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage. J. Orthop. Res. 27:517–521, 2009.PubMedCrossRefGoogle Scholar
  105. 105.
    Sato, M., M. Yamato, K. Hamahashi, T. Okano, and J. Mochida. Articular cartilage regeneration using cell sheet technology. Anat. Rec. (Hoboken) 297:36–43, 2014.CrossRefGoogle Scholar
  106. 106.
    Schon, B. S. Modular Assembly for In Vitro Investigation and Engineering of Articular Cartilage. Dunedin: University of Otago, 2014.Google Scholar
  107. 107.
    Schon, B., K. Schrobback, M. van der Ven, S. Stroebel, G. Hooper, and T. Woodfield. Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs. Cell. Tissue Res. 347:629–642, 2012.CrossRefGoogle Scholar
  108. 108.
    Schrobback, K., T. J. Klein, and T. B. F. Woodfield. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Tissue Eng. Part A 21:1785–1794, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schubert, T., S. Anders, E. Neumann, J. Scholmerich, F. Hofstadter, J. Grifka, U. Muller-Ladner, J. Libera, and J. Schedel. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int. J. Mol. Med. 23:455–460, 2009.PubMedGoogle Scholar
  110. 110.
    Schuurman, W., D. Gawlitta, T. J. Klein, W. ten Hoope, M. H. P. van Rijen, W. J. A. Dhert, P. R. van Weeren, and J. Malda. Zonal chondrocyte subpopulations reacquire zone-specific characteristics during in vitro redifferentiation. Am. J. Sports Med. 37:97S–104S, 2009.PubMedCrossRefGoogle Scholar
  111. 111.
    Schuurman, W., E. B. Harimulyo, D. Gawlitta, T. B. Woodfield, W. J. Dhert, P. R. van Weeren, and J. Malda. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics. J. Tissue Eng. Regen. Med. 2013. doi: 10.1002/term.1726.PubMedGoogle Scholar
  112. 112.
    Shim, J.-H., K.-M. Jang, S. K. Hahn, J. Y. Park, H. Jung, K. Oh, K. M. Park, J. Yeom, S. H. Park, S. W. Kim, J. H. Wang, K. Kim, and D.-W. Cho. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 8:14102, 2016.CrossRefGoogle Scholar
  113. 113.
    Shoichet, M. S. Polymer scaffolds for biomaterials applications. Macromolecules 43:581–591, 2010.CrossRefGoogle Scholar
  114. 114.
    Siclari, A., G. Mascaro, C. Gentili, R. Cancedda, and E. Boux. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin. Orthop. Relat. Res. 470:910–919, 2012.PubMedCrossRefGoogle Scholar
  115. 115.
    Solursh, M. Formation of cartilage tissue in vitro. J. Cell. Biochem. 45:258–260, 1991.PubMedCrossRefGoogle Scholar
  116. 116.
    Spiller, K. L., S. A. Maher, and A. M. Lowman. Hydrogels for the repair of articular cartilage defects. Tissue Eng. Part B Rev. 17:281–299, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Steinberg, M. S. On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganization of fused, heteronomic tissue fragments. Proc. Natl. Acad. Sci. USA 48:1769–1776, 1962.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Steinert, A. F., S. C. Ghivizzani, A. Rethwilm, R. S. Tuan, C. H. Evans, and U. Noth. Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther. 9:213, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Sutherland, A. J., G. L. Converse, R. A. Hopkins, and M. S. Detamore. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv. Healthc. Mater. 4:29–39, 2015.PubMedCrossRefGoogle Scholar
  120. 120.
    Tare, R. S., D. Howard, J. C. Pound, H. I. Roach, and R. O. C. Oreffo. Tissue engineering strategies for cartilage generation—micromass and three dimensional cultures using human chondrocytes and a continuous cell line. Biochem. Biophys. Res. Commun. 333:609–621, 2005.PubMedCrossRefGoogle Scholar
  121. 121.
    Tatman, P. D., W. Gerull, S. Sweeney-Easter, J. I. Davis, A. O. Gee, and D.-H. Kim. Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng. Part B. Rev. 21:543–559, 2015.PubMedCrossRefGoogle Scholar
  122. 122.
    Tay, A. G., J. Farhadi, R. Suetterlin, G. Pierer, M. Heberer, and I. Martin. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng. 10:762–770, 2004.PubMedCrossRefGoogle Scholar
  123. 123.
    Teixeira, L. S. M., J. C. Leijten, J. Sobral, R. Jin, A. A. van Apeldoorn, J. Feijen, C. van Blitterswijk, P. J. Dijkstra, and M. Karperien. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo. Eur. Cell. Mater. 23:387–399, 2012.CrossRefGoogle Scholar
  124. 124.
    van Osch, G., W. Marijnissen, S. W. van der Veen, and H. L. Verwoerd-Verhoef. The potency of culture-expanded nasal septum chondrocytes for tissue engineering of cartilage. Am. J. Rhinol. 15:187–192, 2001.PubMedCrossRefGoogle Scholar
  125. 125.
    Vidal, M. A., S. O. Robinson, M. J. Lopez, D. B. Paulsen, O. Borkhsenious, J. R. Johnson, R. M. Moore, and J. M. Gimble. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet. Surg. 37:713–724, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Visser, J., F. P. W. Melchels, J. E. Jeon, E. M. van Bussel, L. S. Kimpton, H. M. Byrne, W. J. A. Dhert, P. D. Dalton, D. W. Hutmacher, and J. Malda. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun. 6:6933, 2015.PubMedCrossRefGoogle Scholar
  127. 127.
    Visser, J., B. Peters, T. J. Burger, J. Boomstra, W. J. Dhert, F. P. Melchels, and J. Malda. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5:35007, 2013.CrossRefGoogle Scholar
  128. 128.
    Welter, J. F., L. A. Solchaga, and K. J. Penick. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay. Biotechniques 42:732–737, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    West, A. R., N. Zaman, D. J. Cole, M. J. Walker, W. R. Legant, T. Boudou, C. S. Chen, J. T. Favreau, G. R. Gaudette, E. A. Cowley, and G. N. Maksym. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 304:L4–L16, 2013.PubMedCrossRefGoogle Scholar
  130. 130.
    Woodfield, T. B. F., J. M. Bezemer, J. S. Pieper, C. A. van Blitterswijk, and J. Riesle. Scaffolds for tissue engineering of cartilage. Crit. Rev. Eukaryot. Gene Expr. 12:209–236, 2002.PubMedCrossRefGoogle Scholar
  131. 131.
    Woodfield, T. B. F., M. Guggenheim, B. von Rechenberg, J. Riesle, C. A. van Blitterswijk, and V. Wedler. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 42:485–497, 2009.PubMedCrossRefGoogle Scholar
  132. 132.
    Woodfield, T. B. F., S. Miot, I. Martin, C. A. van Blitterswijk, and J. Riesle. The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials 27:1043–1053, 2006.PubMedCrossRefGoogle Scholar
  133. 133.
    Woodfield, T. B. F., C. A. Van Blitterswijk, J. De Wijn, T. J. Sims, A. P. Hollander, and J. Riesle. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng. 11:1297–1311, 2005.PubMedCrossRefGoogle Scholar
  134. 134.
    Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. Zhao, J. J. Yoo, and A. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001, 2013.PubMedCrossRefGoogle Scholar
  135. 135.
    Yuhas, J. M., A. P. Li, A. O. Martinez, and A. J. Ladman. A simplified method for production and growth of multicellular tumor spheroids. Cancer Res. 37:3639–3643, 1977.PubMedGoogle Scholar
  136. 136.
    Zhang, Z. J., J. M. McCaffery, R. G. S. Spencer, and C. A. Francomano. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. J. Anat. 205:229–237, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Zimmermann, W. H., I. Melnychenko, G. Wasmeier, M. Didie, H. Naito, U. Nixdorff, A. Hess, L. Budinsky, K. Brune, B. Michaelis, S. Dhein, A. Schwoerer, H. Ehmke, and T. Eschenhagen. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12:452–458, 2006.PubMedCrossRefGoogle Scholar
  138. 138.
    Zorlutuna, P., N. Annabi, G. Camci-Unal, M. Nikkhah, J. M. Cha, J. W. Nichol, A. Manbachi, H. Bae, S. Chen, and A. Khademhosseini. Microfabricated biomaterials for engineering 3d tissues. Adv. Mater. 24:1782–1804, 2012.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • B. S. Schon
    • 1
  • G. J. Hooper
    • 1
  • T. B. F. Woodfield
    • 1
    Email author
  1. 1.Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopedic Surgery and Centre for Bioengineering & NanomedicineUniversity of OtagoChristchurchNew Zealand

Personalised recommendations