Annals of Biomedical Engineering

, Volume 44, Issue 11, pp 3202–3214 | Cite as

Accuracy of 4D Flow Measurement of Cerebrospinal Fluid Dynamics in the Cervical Spine: An In Vitro Verification Against Numerical Simulation

  • Soroush Heidari Pahlavian
  • Alexander C. Bunck
  • Suraj Thyagaraj
  • Daniel Giese
  • Francis Loth
  • Dennis M. Hedderich
  • Jan Robert Kröger
  • Bryn A. Martin
Article

Abstract

Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5 and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities.

Keywords

Magnetic resonance imaging 4D Flow measurement Cerebrospinal fluid Computational fluid dynamics Phantom experiment 

Abbreviations

CSF

Cerebrospinal fluid

CNS

Central nervous system

SAS

Subarachnoid space

PCMRI

Phase-contrast magnetic resonance imaging

CFD

Computational fluid dynamics

FM

Foramen magnum

TR

Repetition time

TE

Echo time

VENC

Encoding velocity

VNR

Velocity to noise ratio

Notes

Acknowledgments

Authors would like to appreciate Conquer Chiari and American Syringomyelia Alliance Project for the support of this work. Authors would also like to acknowledge Dr. Jae-Won Choi and Dr. Morteza Vatani for the helpful discussions and assistance in the rapid-prototyping of the phantom model.

Conflict of interest

Authors have no conflict of interests.

Supplementary material

10439_2016_1602_MOESM1_ESM.tif (527 kb)
Supplementary material 1 (TIFF 527 kb)
10439_2016_1602_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 kb)
10439_2016_1602_MOESM3_ESM.docx (21 kb)
Supplementary material 3 (DOCX 20 kb)

References

  1. 1.
    Alleyne, Jr, C. H., C. M. Cawley, D. L. Barrow, and G. D. Bonner. Microsurgical anatomy of the dorsal cervical nerve roots and the cervical dorsal root ganglion/ventral root complexes. Surg. Neurol. 50:213–218, 1998.CrossRefPubMedGoogle Scholar
  2. 2.
    Bernstein, M. A., X. J. Zhou, J. A. Polzin, K. F. King, A. Ganin, N. J. Pelc, and G. H. Glover. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn. Reson. Med. 39:300–308, 1998.CrossRefPubMedGoogle Scholar
  3. 3.
    Bloomfield, I. G., I. H. Johnston, and L. E. Bilston. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28:246–251, 1998.CrossRefPubMedGoogle Scholar
  4. 4.
    Bradley, Jr, W. G., D. Scalzo, J. Queralt, W. N. Nitz, D. J. Atkinson, and P. Wong. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198:523–529, 1996.CrossRefPubMedGoogle Scholar
  5. 5.
    Bunck, A. C., J. R. Kroeger, A. Juettner, A. Brentrup, B. Fiedler, G. R. Crelier, B. A. Martin, W. Heindel, D. Maintz, W. Schwindt, and T. Niederstadt. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur. Radiol. 22:1860–1870, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Bunck, A. C., J. R. Kroger, A. Juttner, A. Brentrup, B. Fiedler, F. Schaarschmidt, G. R. Crelier, W. Schwindt, W. Heindel, T. Niederstadt, and D. Maintz. Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur. Radiol. 21:1788–1796, 2011.CrossRefPubMedGoogle Scholar
  7. 7.
    Busch, J., D. Giese, L. Wissmann, and S. Kozerke. Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements. Magn. Reson. Med. 69:200–210, 2013.CrossRefPubMedGoogle Scholar
  8. 8.
    Canstein, C., P. Cachot, A. Faust, A. F. Stalder, J. Bock, A. Frydrychowicz, J. Kuffer, J. Hennig, and M. Markl. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magn. Reson. Med. 59:535–546, 2008.CrossRefPubMedGoogle Scholar
  9. 9.
    Clarke, E. C., D. F. Fletcher, M. A. Stoodley, and L. E. Bilston. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46:1801–1809, 2013.CrossRefPubMedGoogle Scholar
  10. 10.
    Giese, D., M. Haeberlin, C. Barmet, K. P. Pruessmann, T. Schaeffter, and S. Kozerke. Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring. Magn. Reson. Med. 67:1294–1302, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    Ha, H., G. B. Kim, J. Kweon, Y.-H. Kim, N. Kim, D. H. Yang, and S. J. Lee. Multi-VENC acquisition of four-dimensional phase-contrast MRI to improve precision of velocity field measurement. Magn. Reson. Med., 2015. doi: 10.1002/mrm.25715.Google Scholar
  12. 12.
    Hayashi, N., M. Matsumae, S. Yatsushiro, A. Hirayama, A. Abdullah, and K. Kuroda. Quantitative analysis of cerebrospinal fluid pressure gradients in healthy volunteers and patients with normal pressure hydrocephalus. Neurol. Med. Chir. (Tokyo) 55:657–662, 2015.CrossRefGoogle Scholar
  13. 13.
    Heidari Pahlavian, S., A. C. Bunck, F. Loth, R. Shane Tubbs, T. Yiallourou, J. R. Kroeger, W. Heindel, and B. A. Martin. Characterization of the discrepancies between four-dimensional phase-contrast magnetic resonance imaging and in silico simulations of cerebrospinal fluid dynamics. J Biomech Eng 137:051002, 2015.CrossRefPubMedGoogle Scholar
  14. 14.
    Heidari Pahlavian, S., T. Yiallourou, R. S. Tubbs, A. C. Bunck, F. Loth, M. Goodin, M. Raisee, and B. A. Martin. The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS ONE 9:e91888, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Helgeland, A., K. A. Mardal, V. Haughton, and B. A. Reif. Numerical simulations of the pulsating flow of cerebrospinal fluid flow in the cervical spinal canal of a Chiari patient. J. Biomech. 47:1082–1090, 2014.CrossRefPubMedGoogle Scholar
  16. 16.
    Hsu, Y., H. D. Hettiarachchi, D. C. Zhu, and A. A. Linninger. The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability (vol 115, pg 386, 2012). Anesth. Analg. 115:879–879, 2012.CrossRefGoogle Scholar
  17. 17.
    Iliff, J. J., M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman, E. A. Nagelhus, and M. Nedergaard. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jacobs, P. F., D. T. Reid, and Computer and A. S. A. o. SME. Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Dearborn: Society of Manufacturing Engineers, 1992.Google Scholar
  19. 19.
    Jones, C. F., J. H. Lee, B. K. Kwon, and P. A. Cripton. Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: laboratory investigation. J. Neurosurg. Spine. 16:624–635, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Kress, B. T., J. J. Iliff, M. Xia, M. Wang, H. S. Wei, D. Zeppenfeld, L. Xie, H. Kang, Q. Xu, J. A. Liew, B. A. Plog, F. Ding, R. Deane, and M. Nedergaard. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:845–861, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33:257–269, 2005.CrossRefPubMedGoogle Scholar
  22. 22.
    Lagana, M. M., A. Chaudhary, D. Balagurunathan, D. Utriainen, P. Kokeny, W. Feng, P. Cecconi, D. Hubbard, and E. M. Haacke. Cerebrospinal fluid flow dynamics in multiple sclerosis patients through phase contrast magnetic resonance imaging. Curr. Neurovasc. Res. 11:349–358, 2014.CrossRefPubMedGoogle Scholar
  23. 23.
    Markl, M., R. Bammer, M. Alley, C. Elkins, M. Draney, A. Barnett, M. Moseley, G. Glover, and N. Pelc. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn. Reson. Med. 50:791–801, 2003.CrossRefPubMedGoogle Scholar
  24. 24.
    Martin, B. A., R. Labuda, T. J. Royston, J. N. Oshinski, B. Iskandar, and F. Loth. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories. J. Biomech. Eng. Trans. Asme. (2010). doi: 10.1115/1.4000089.PubMedGoogle Scholar
  25. 25.
    Martin, B. A., T. I. Yiallourou, S. H. Pahlavian, S. Thyagaraj, A. C. Bunck, F. Loth, D. B. Sheffer, J. R. Kroger, and N. Stergiopulos. Inter-operator reliability of magnetic resonance image-based computational fluid dynamics prediction of cerebrospinal fluid motion in the cervical spine. Ann. Biomed. Eng. 43:1–14, 2015.CrossRefGoogle Scholar
  26. 26.
    McCauley, T. R., C. S. Pena, C. K. Holland, T. B. Price, and J. C. Gore. Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J. Magn. Reson. Imaging 5:663–668, 1995.CrossRefPubMedGoogle Scholar
  27. 27.
    Nelissen, R. M. Fluid Mechanics of Intrathecal Drug Delivery, Doctoral Thesis. EPFL, Lausanne, Switzerland: Citeseer, 2008.Google Scholar
  28. 28.
    Ong, F., M. Uecker, U. Tariq, A. Hsiao, M. T. Alley, S. S. Vasanawala, and M. Lustig. Robust 4D flow denoising using divergence-free wavelet transform. Magn. Reson. Med. 73:828–842, 2015.CrossRefPubMedGoogle Scholar
  29. 29.
    Papisov, M. I., V. V. Belov, and K. S. Gannon. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 10(5):1522–1532, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Silverberg, G., M. Mayo, T. Saul, J. Fellmann, and D. McGuire. Elevated cerebrospinal fluid pressure in patients with Alzheimer’s disease. Cerebrospinal. Fluid Res. 3:7, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Simpson, K., G. Baranidharan, and S. Gupta. Spinal Interventions in Pain Management. UK: Oxford University Press, 2012.CrossRefGoogle Scholar
  32. 32.
    Stadlbauer, A., E. Salomonowitz, C. Brenneis, K. Ungersbock, W. van der Riet, M. Buchfelder, and O. Ganslandt. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results. Eur. Radiol. 22:232–242, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Traber, J., L. Wurche, M. A. Dieringer, W. Utz, F. von Knobelsdorff-Brenkenhoff, A. Greiser, N. Jin, and J. Schulz-Menger. Real-time phase contrast magnetic resonance imaging for assessment of haemodynamics: from phantom to patients. Eur. Radiol. 26:986–996, 2015.CrossRefPubMedGoogle Scholar
  34. 34.
    Walker, P. G., G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J. Magn. Reson. Imaging 3:521–530, 1993.CrossRefPubMedGoogle Scholar
  35. 35.
    Wostyn, P., K. Audenaert, and P. P. De Deyn. More advanced Alzheimer’s disease may be associated with a decrease in cerebrospinal fluid pressure. Cerebrospinal Fluid Res. 6:14, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yiallourou, T. I., J. R. Kroger, N. Stergiopulos, D. Maintz, A. C. Bunck, and B. A. Martin. Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS ONE 7:e52284, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Soroush Heidari Pahlavian
    • 1
    • 2
  • Alexander C. Bunck
    • 3
    • 4
  • Suraj Thyagaraj
    • 1
    • 2
  • Daniel Giese
    • 3
  • Francis Loth
    • 1
    • 2
  • Dennis M. Hedderich
    • 3
  • Jan Robert Kröger
    • 4
  • Bryn A. Martin
    • 5
  1. 1.Conquer Chiari Research CenterThe University of AkronAkronUSA
  2. 2.Department of Mechanical EngineeringThe University of AkronAkronUSA
  3. 3.Department of RadiologyUniversity Hospital of CologneCologneGermany
  4. 4.Department of RadiologyUniversity Hospital of MuensterMuensterGermany
  5. 5.Department of Biological EngineeringThe University of IdahoMoscowUSA

Personalised recommendations