Skip to main content

Advertisement

Log in

Hierarchical CT to Ultrasound Registration of the Lumbar Spine: A Comparison with Other Registration Methods

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) measurement of the spine can provide important information for functional, developmental, diagnostic, and treatment-effect evaluations. However, existing measurement techniques are either 2-dimensional, highly invasive, or involve a high radiation dose, prohibiting their widespread and repeated use in both research and clinical settings. Non-invasive, non-ionizing, 3D measurement of the spine is still beyond the current state-of-the-art. Towards this goal, we developed an intensity-based hierarchical CT-ultrasound registration approach to quantify the 3D positions and orientations of lumbar vertebrae from 3D freehand ultrasound and one-time computed tomography. The method was validated using a human dry bone specimen (T12-L5) and a porcine cadaver (L2-L6) by comparing the registration results with a gold standard fiducial-based registration. Mean (SD) target registration error and percentage of successful registration were 1.2 (0.6) mm and 100% for the human dry bone specimen, and 2.18 (0.82) mm and 92% for the porcine cadaver, indicating that the method is accurate and robust under clinically realistic conditions. Given that the use of ultrasound eliminates ionizing radiation during pose measurements, we believe that the hierarchical CT-ultrasound registration method is an attractive option for quantifying 3D poses of individual vertebra and motion segment, and thus warrants further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Aurouer, N., I. Obeid, O. Gille, V. Pointillart, and J. M. Vital. Computerized preoperative planning for correction of sagittal deformity of the spine. Surg. Radiol. Anat. 31:781–792, 2009.

    Article  PubMed  Google Scholar 

  2. Brendel, B., S. Winter, A. Rick, M. Stockheim, and H. Ermert. Registration of 3D CT and ultrasound datasets of the spine using bone structures. Comput. Aided Surg. 7:146–155, 2002.

    Article  CAS  PubMed  Google Scholar 

  3. Cobb, J. R. Outline for the study of scoliosis. Instr. Course Lect. 5:261–275, 1948.

    Google Scholar 

  4. Dath, R., A. D. Ebinesan, K. M. Porter, and A. W. Miles. Anatomical measurements of porcine lumbar vertebrae. Clin. Biomech. (Bristol., Avon.) 22:607–613, 2007.

    Article  CAS  Google Scholar 

  5. Dickey, J. P., M. R. Pierrynowski, D. A. Bednar, and S. X. Yang. Relationship between pain and vertebral motion in chronic low-back pain subjects. Clin. Biomech. (Bristol., Avon.) 17:345–352, 2002.

    Article  Google Scholar 

  6. Doyle, W. Operation useful for similarity-invariant pattern recognition. J. ACM. 9:259–267, 1962.

    Article  Google Scholar 

  7. Fujiwara, A., K. Tamai, H. S. An, T. Kurihashi, T. H. Lim, H. Yoshida, and K. Saotome. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J. Spinal Disord. 13:444–450, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Gill, S., P. Abolmaesumi, G. Fichtinger, J. Boisvert, D. Pichora, D. Borshneck, and P. Mousavi. Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med. Image Anal. 16:662–674, 2012.

    Article  PubMed  Google Scholar 

  9. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech. Eng. 105:136–144, 1983.

    Article  CAS  PubMed  Google Scholar 

  10. Haberland, N., K. Ebmeier, J. P. Grunewald, R. Hliscs, and R. L. Kalff. Incorporation of intraoperative computerized tomography in a newly developed spinal navigation technique. Comput. Aided Surg. 5:18–27, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Haque, M. A., W. Anderst, S. Tashman, and G. E. Marai. Hierarchical model-based tracking of cervical vertebrae from dynamic biplane radiographs. Med. Eng. Phys. 35:994–1004, 2013.

    Article  PubMed  Google Scholar 

  12. Haughton, V. M., B. Rogers, M. E. Meyerand, and D. K. Resnick. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 23:1110–1116, 2002.

    PubMed  Google Scholar 

  13. Hayes, M. A., T. C. Howard, C. R. Gruel, and J. A. Kopta. Roentgenographic evaluation of lumbar spine flexion-extension in asymptomatic individuals. Spine (Phila Pa 1976) 14:327–331, 1989.

    Article  CAS  Google Scholar 

  14. ISO 5725-2:1994. Accuracy (trueness and precision) of measurement methods and results. Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method. 1994.

  15. ISO 5725-4:1994. Accuracy (trueness and precision) of measurement methods and results. Part 4: Basic methods for the determination of the trueness of a standard measurement method. 1994.

  16. Koo, T. K., J. Y. Guo, C. Ippolito, and J. C. Bedle. Assessment of scoliotic deformity using spinous processes: comparison of different analysis methods of an ultrasonographic system. J. Manip. Physiol. Ther. 37:667–677, 2014.

    Article  Google Scholar 

  17. Landini, G. Auto threshold. http://fiji.sc/Auto_Threshold. 2015.

  18. McDonald, C. P., C. C. Bachison, V. Chang, S. W. Bartol, and M. J. Bey. Three-dimensional dynamic in vivo motion of the cervical spine: assessment of measurement accuracy and preliminary findings. Spine J. 10:497–504, 2010.

    Article  PubMed  Google Scholar 

  19. Muratore, D. M., B. M. Dawant, and R. L. Galloway. Vertebral surface extraction from ultrasound images for technology-guided therapy. Proc. SPIE 3661:1499–1510, 1999.

    Article  Google Scholar 

  20. Nelder, J. A., and R. Mead. A simplex method for function minimization. Comput. J. 7:308–313, 1965.

    Article  Google Scholar 

  21. Ochia, R. S., N. Inoue, S. M. Renner, E. P. Lorenz, T. H. Lim, G. B. Andersson, and H. S. An. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila Pa 1976) 31:2073–2078, 2006.

    Article  Google Scholar 

  22. Olsson, D. M., and L. S. Nelson. The Nelder-Mead simplex procedure for function minimization. Technometrics 17:45–51, 1975.

    Article  Google Scholar 

  23. Pearcy, M., I. Portek, and J. Shepherd. Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine (Phila Pa 1976) 9:294–297, 1984.

    Article  CAS  Google Scholar 

  24. Prewitt, J. M. S., and M. L. Mendelsohn. The analysis of cell images. Ann. N. Y. Acad. Sci. 128:1035–1053, 1966.

    Article  CAS  PubMed  Google Scholar 

  25. Rasoulian, A., P. Abolmaesumi, and P. Mousavi. Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med. Phys. 39:3154–3166, 2012.

    Article  PubMed  Google Scholar 

  26. Rasoulian, A., A. Seitel, J. Osborn, S. Sojoudi, S. Nouranian, V. A. Lessoway, R. N. Rohling, and P. Abolmaesumi. Ultrasound-guided spinal injections: a feasibility study of a guidance system. Int. J. Comput. Assist. Radiol. Surg. 10:1417–1425, 2015.

    Article  PubMed  Google Scholar 

  27. Ron, O., L. Joskowicz, C. Milgrom, and A. Simkin. Computer-based periaxial rotation measurement for aligning fractured femur fragments from CT: a feasibility study. Comput. Aided Surg. 7:332–341, 2002.

    Article  PubMed  Google Scholar 

  28. Shao, W., R. Wu, K. V. Ling, C. H. Thng, H. S. Ho, C. W. Cheng, and W. S. Ng. Evaluation on similarity measures of a surface-to-image registration technique for ultrasound images. Med. Image Comput. Comput. Assist. Interv. 9:742–749, 2006.

    PubMed  Google Scholar 

  29. Singer, S., and J. Nelder. Nelder-Mead algorithm. Scholarpedia J. 4:2928, 2009.

    Article  Google Scholar 

  30. Tsao, J., C. P. Chiodo, D. S. Williamson, M. G. Wilson, and R. Kikinis. Computer-assisted quantification of periaxial bone rotation from X-ray CT. J Comput. Assist. Tomogr. 22:615–620, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Weber, P. K., J. C. Schlegel, J. Meiche, L. Peter, and U. Harland. A system for ultrasound-based intraoperative navigation in spine-surgery. IEEE Int. Ultrasound Symp. 2:1361–1364, 2001.

    Google Scholar 

  32. Wever, D. J., A. G. Veldhuizen, J. P. Klein, P. J. Webb, G. Nijenbanning, J. C. Cool, and J. R. Horn. A biomechanical analysis of the vertebral and rib deformities in structural scoliosis. Eur. Spine J. 8:252–260, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Winter, S., B. Brendel, I. Pechlivanis, K. Schmieder, and C. Igel. Registration of CT and intraoperative 3-D ultrasound images of the spine using evolutionary and gradient-based methods. IEEE Trans. Evolut. Comput. 12:284–296, 2008.

    Article  Google Scholar 

  34. Winter, S., I. Pechlivanis, C. Dekomien, C. Igel, and K. Schmieder. Toward registration of 3D ultrasound and CT images of the spine in clinical praxis: design and evaluation of a data acquisition protocol. Ultrasound Med. Biol. 35:1773–1782, 2009.

    Article  PubMed  Google Scholar 

  35. Yan, C. X., B. Goulet, J. Pelletier, S. J. Chen, D. Tampieri, and D. L. Collins. Towards accurate, robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery. Int. J. Comput. Assist. Radiol. Surg. 6:523–537, 2011.

    Article  PubMed  Google Scholar 

  36. Yan, C. X., B. Goulet, D. Tampieri, and D. L. Collins. Ultrasound-CT registration of vertebrae without reconstruction. Int. J. Comput. Assist. Radiol. Surg. 7:901–909, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jingyi Gao for her initial contribution of this work, Christopher Kirby, Weiling Zhang, Komal Khattak, and Nicholas Darcangelo for their assistance in data collection and analysis, Dr. Tom Foster, Erik Saluste, Angela Holland and Sandy Smashe for their involvements in arranging and performing the CT scans at Strong Memorial Hospital, and Anne Smith for her help on proofreading the manuscript. This work was supported by an intramural fund of New York Chiropractic College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry K. Koo.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 1323 kb)

Supplementary material 2 (GIF 3454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, T.K., Kwok, W.E. Hierarchical CT to Ultrasound Registration of the Lumbar Spine: A Comparison with Other Registration Methods. Ann Biomed Eng 44, 2887–2900 (2016). https://doi.org/10.1007/s10439-016-1599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1599-1

Keywords

Navigation