Skip to main content
Log in

Foot–Ankle Fractures and Injury Probability Curves from Post-mortem Human Surrogate Tests

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This purpose of this study was to replicate foot–ankle injuries seen in the military and derive human injury probability curves using the human cadaver model. Lower legs were isolated below knee from seventeen unembalmed human cadavers and they were aligned in a 90–90 posture (plantar surface orthogonal to leg). The specimens were loaded along the tibia axis by applying short-time duration pulses, using a repeated testing protocol. Injuries were documented using pre- and post-test X-rays, computed tomography scans, and dissection. Peak force-based risk curves were derived using survival analysis and accounted for data censoring. Fractures were grouped into all foot–ankle (A), any calcaneus (B), and any tibia injuries (C), respectively. Calcaneus and/or distal tibia/pilon fractures occurred in fourteen tests. Axial forces were the greatest and least for groups C and B, respectively. Times attainments of forces for all groups were within ten milliseconds. The Weibull function was the optimal probability distribution for all groups. Age was significant (p < 0.05) for groups A and C. Survival analysis-based probability curves were derived for all groups. Data are given in the body of paper. Age-based, risk-specific, and continuous distribution probability curves/responses guide in the creation of an injury assessment capability for military blast environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, R. B., K. J. Hunt, and J. J. McCormick. Management of common sports-related injuries about the foot and ankle. J. Am. Acad. Orthop. Surg. 18(9):546–556, 2010.

    Article  PubMed  Google Scholar 

  2. Bailey, A. M., J. J. Christopher, K. Henderson, F. Brozoski, R. S. Salzar. Comparison of Hybrid III and PMHS Response to Simulated Underbody Blast Loading Conditions. In: IRCOBI, Gothenburg, Sweden, September 9–11 2013, pp. 158–170

  3. Bailey, A. M., T. L. McMurry, G. S. Poplin, R. S. Salzar, and J. R. Crandall. Survival model for foot and leg high rate axial impact injury data. Traffic Inj. Prev. 16(Suppl 2):S96–S102, 2015. doi:10.1080/15389588.2015.1061185.

    Article  PubMed  Google Scholar 

  4. Begeman, P. C., K. Aekbote. Axial load strength and some ligament properties of the ankle joint. In: 6th Injury Prevention Through Biomechanics Symposium, edited by M. J. Grimm. Wayne State University: Detroit, MI, 1996, pp. 125–135

  5. Begeman, P. C., P. Prasad. Human ankle response in dorsiflexion. In: Stapp Car Crash Conference. 1990

  6. Belmont, Jr, P. J., G. P. Goodman, M. Zacchilli, M. Posner, C. Evans, and B. D. Owens. Incidence and epidemiology of combat injuries sustained during “the surge” portion of operation Iraqi Freedom by a U.S. Army brigade combat team. J. Trauma 68(1):204–210, 2010. doi:10.1097/TA.0b013e3181bdcf95.

    Article  PubMed  Google Scholar 

  7. Belmont, P. J., A. J. Schoenfeld, and G. Goodman. Epidemiology of combat wounds in Operation Iraqi Freedom and Operation Enduring Freedom: orthopaedic burden of disease. J. Surg. Orthop. Adv. 19(1):2–7, 2010.

    PubMed  Google Scholar 

  8. Boon, A. J., J. Smith, M. E. Zobitz, and K. M. Amrami. Snowboarder’s talus fracture. Mechanism of injury. Am. J. Sports Med. 29(3):333–338, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. Burgess, A. R., P. C. Dischinger, T. D. O’Quinn, and C. B. Schmidhauser. Lower extremity injuries in drivers of airbag-equipped automobiles: clinical and crash reconstruction correlations. J. Trauma 38(4):509–516, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Cross, J. D., J. R. Ficke, J. R. Hsu, B. D. Masini, and J. C. Wenke. Battlefield orthopaedic injuries cause the majority of long-term disabilities. J. Am. Acad. Orthop. Surg. 19(Suppl 1):S1–S7, 2011.

    Article  PubMed  Google Scholar 

  11. Funk, J. R., J. R. Crandall, L. J. Tourret, C. B. MacMahon, C. R. Bass, J. T. Patrie, N. Khaewpong, and R. H. Eppinger. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension. J Biomech Eng 124(6):750–757, 2002.

    Article  PubMed  Google Scholar 

  12. Gallenberger, K., N. Yoganandan, and F. Pintar. Biomechanics of foot/ankle trauma with variable energy impacts. Ann. Adv. Automot. Med. 57:123–132, 2013.

    PubMed  PubMed Central  Google Scholar 

  13. Giza, E., C. Fuller, A. Junge, and J. Dvorak. Mechanisms of foot and ankle injuries in soccer. Am. J. Sports Med. 31(4):550–554, 2003.

    Article  PubMed  Google Scholar 

  14. Henderson, K., A. M. Bailey, J. J. Christopher, F. Brozoski, R. S. Salzar. Biomechanical response of the lower leg under high rate loading. In: IRCOBI, Gothenburg, Sweden, September 9–11 2013, pp. 145–157

  15. Hosmer, D. W., S. Lemeshow, and S. May. Applied survival analysis: regression modeling of time to event data. New York: Wiley, 1999.

    Google Scholar 

  16. http://www.icfi.com/workforce (2014) Military Community and Family Policy.

  17. Kang, D. G., R. A. Lehman, Jr, and E. J. Carragee. Wartime spine injuries: understanding the improvised explosive device and biophysics of blast trauma. Spine J. 12(9):849–857, 2012. doi:10.1016/j.spinee.2011.11.014.

    Article  PubMed  Google Scholar 

  18. Kitagawa, Y., H. Ichikawa, A. I. King, R. S. Levine, A severe ankle and foot injury in frontal crashes and its mechanism. In: 42nd Stapp Car Crash Conference. Warrendale, PA: Society of Automotive Engineers, 1998.

  19. Kleinberger, M., E. Sun, R. Eppinger, S. Kuppa, and R. Saul. Development of improved injury criteria for the assessment of advanced automotive restraint systems. Washington, DC: NHTSA, 1998.

    Google Scholar 

  20. Kuppa, S., R. H. Eppinger, F. McKoy, T. Nguyen, F. A. Pintar, and N. Yoganandan. Development of side impact thoracic injury criteria and their application to the modified ES-2 dummy with rib extensions (ES-2re). Stapp Car Crash J. 47:189–210, 2003.

    PubMed  Google Scholar 

  21. Loo, G. T., J. H. Siegel, P. C. Dischinger, D. Rixen, A. R. Burgess, M. D. Addis, T. O’Quinn, L. McCammon, C. B. Schmidhauser, P. Marsh, P. A. Hodge, and F. Bents. Airbag protection versus compartment intrusion effect determines the pattern of injuries in multiple trauma motor vehicle crashes. J. Trauma 41(6):935–951, 1996.

    Article  CAS  PubMed  Google Scholar 

  22. Masouros, S. D., N. Newell, T. J. Bonner, A. Ramasamy, A. M. Hill, A. T. H. West, J. C. Clasper, A. M. J. Bull. A standing vehicle occupant is likely to sustain a more severe injury than one who has flexed knees in an under‐vehicle explosion: a cadaveric study. In: IRCOBI, 2012.

  23. McKay, B. J., and C. A. Bir. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 53:229–249, 2009.

    PubMed  Google Scholar 

  24. Morgan, R. M., R. H. Eppinger, B. C. Hennessey. Ankle joint injury mechanism for adults in frontal automotive impact. In: 35th Stapp Car Crash Conference. Warrendale, PA: Society of Automotive Engineers, 1991, pp. 189–198.

  25. Owens, B. D., J. F. Kragh, Jr, J. C. Wenke, J. Macaitis, C. E. Wade, and J. B. Holcomb. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64(2):295–299, 2008. doi:10.1097/TA.0b013e318163b875.

    Article  PubMed  Google Scholar 

  26. Petitjean, A., X. Trosseille, N. Praxl, D. Hynd, and A. Irwin. Injury risk curves for the WorldSID 50th male dummy. Stapp Car Crash J. 56:323–347, 2012.

    PubMed  Google Scholar 

  27. Pintar, F. A., N. Yoganandan, and D. J. Maiman. Lower cervical spine loading in frontal sled tests using inverse dynamics: potential applications for lower neck injury criteria. Stapp Car Crash J. 54:133–166, 2010.

    PubMed  Google Scholar 

  28. Pintar, F. A., N. Yoganandan, and L. Voo. Effect of age and loading rate on human cervical spine injury threshold. Spine (Phila Pa 1976) 23(18):1957–1962, 1998.

    Article  CAS  Google Scholar 

  29. Quenneville, C. E., G. S. Fraser, and C. E. Dunning. Development of an apparatus to produce fractures from short-duration high-impulse loading with an application in the lower leg. J. Biomech. Eng. 132(1):014502, 2010. doi:10.1115/1.4000084.

    Article  PubMed  Google Scholar 

  30. Ramasamy, A., S. D. Masouros, N. Newell, A. M. Hill, W. G. Proud, K. A. Brown, A. M. Bull, and J. C. Clasper. In-vehicle extremity injuries from improvised explosive devices: current and future foci. Philos. Trans. R. Soc. Lond. B. 366(1562):160–170, 2011. doi:10.1098/rstb.2010.0219.

    Article  Google Scholar 

  31. Read, K. M., J. A. Kufera, P. C. Dischinger, T. J. Kerns, S. M. Ho, A. R. Burgess, and C. A. Burch. Life-altering outcomes after lower extremity injury sustained in motor vehicle crashes. J. Trauma 57(4):815–823, 2004.

    Article  PubMed  Google Scholar 

  32. Salzar, R. S., W. B. Lieevrs, and A. M. Bailey. Leg, foot and ankle injury biomechanics. In: Accidental Injury: Biomechanics and Prevention, edited by N. Yoganandan, A. M. Nahum, and J. W. Melvin. New York: Springer Inc, 2015, pp. 499–547.

    Google Scholar 

  33. Seipel, R. C., F. A. Pintar, N. Yoganandan, and M. D. Boynton. Biomechanics of calcaneal fractures: a model for the motor vehicle. Clin. Orthop. Relat. Res. 388:218–224, 2001.

    Article  Google Scholar 

  34. Society of Automotive Engineers. Instrumentation for impact test: Part 1 - electronic Instrumentation-SAE J211/1. Society of Automotive Engineers, Warrendale, PA, 2003.

  35. TR-HFM-090 North Atlantic Treaty Organisation HFM‐148/RTG, Test methodology for protection of vehicle occupants against anti‐vehicular landmine and/or IED effects, 2007.

  36. Wang, L., R. Banglmaier, P. Prasad. Injury risk assessment of several crash data sets. In: SAE World Congress, Detroit, Michigan: Society of Automotive Engineers, 2003, pp 1–15.

  37. Yoganandan, N., M. W. J. Arun, J. M. Moore, and F. A. Pintar. Dynamic responses of intact post mortem human surrogates from inferior-to-superior loading at the pelvis. Stapp Car Crash J. 59:1–14, 2014.

    Google Scholar 

  38. Yoganandan, N., M. W. Arun, F. A. Pintar, and A. Banerjee. Lower leg injury reference values and risk curves from survival analysis for male and female dummies: meta-analysis of postmortem human subject tests. Traffic Inj. Prev. 16(Suppl 1):S100–S107, 2015. doi:10.1080/15389588.2015.1015118.

    Article  PubMed  Google Scholar 

  39. Yoganandan, N., M. W. Arun, F. A. Pintar, and A. Szabo. Optimized lower leg injury probability curves from postmortem human subject tests under axial impacts. Traffic Inj. Prev. 15(Suppl 1):S151–S156, 2014. doi:10.1080/15389588.2014.935357.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yoganandan, N., F. A. Pintar, M. Boynton, P. Begeman, P. Prasad, S. M. Kuppa, R. M. Morgan, R. H. Eppinger. Dynamic axial tolerance of the human foot-ankle complex, In: Stapp Car Crash Conference. Albuquerque, New Mexico, United States, 1996.

  41. Yoganandan, N., F. A. Pintar, S. Kumaresan, and M. Boynton. Axial impact biomechanics of the human foot-ankle complex. J. Biomech. Eng. 119(4):433–437, 1997.

    Article  CAS  PubMed  Google Scholar 

  42. Yoganandan, N., F. A. Pintar, M. Schlick, J. R. Humm, L. Voo, A. Merkle, and M. Kleinberger. Vertical accelerator device to apply loads simulating blast environments in the military to human surrogates. J. Biomech. 2015. doi:10.1016/j.jbiomech.2015.06.008.

    Google Scholar 

  43. Yoganandan, N., F. A. Pintar, and R. Seipel. Experimental production of extra- and intra-articular fractures of the os calcis. J. Biomech. 33(6):745–749, 2000.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Cooperative Agreements W81XWH-10-2-0065 and W81XWH-12-0041 (Warrior Injury Assessment Manikin study), Department of Veterans Affairs Medical Research and Department of Neurosurgery at the Medical College of Wisconsin. This material is the result of work supported with resources and use of facilities at the Zablocki VA Medical Center, Milwaukee, Wisconsin and Medical College of Wisconsin. The first, second, fourth and fifth authors are part-time employees of the Zablocki VA Medical Center, Milwaukee, Wisconsin. Any views expressed in this article are those of the authors and not necessarily representative of the funding organizations. Further, all authors do not have any sources of conflict of interest for this work.

Conflict of Interest

None of the authors of this paper have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan Yoganandan.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoganandan, N., Chirvi, S., Pintar, F.A. et al. Foot–Ankle Fractures and Injury Probability Curves from Post-mortem Human Surrogate Tests. Ann Biomed Eng 44, 2937–2947 (2016). https://doi.org/10.1007/s10439-016-1598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1598-2

Keywords

Navigation