Skip to main content
Log in

Measurement of Strain in Cardiac Myocytes at Micrometer Scale Based on Rapid Scanning Confocal Microscopy and Non-Rigid Image Registration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Measurement of cell shortening is an important technique for assessment of physiology and pathophysiology of cardiac myocytes. Many types of heart disease are associated with decreased myocyte shortening, which is commonly caused by structural and functional remodeling. Here, we present a new approach for local measurement of 2-dimensional strain within cells at high spatial resolution. The approach applies non-rigid image registration to quantify local displacements and Cauchy strain in images of cells undergoing contraction. We extensively evaluated the approach using synthetic cell images and image sequences from rapid scanning confocal microscopy of fluorescently labeled isolated myocytes from the left ventricle of normal and diseased canine heart. Application of the approach yielded a comprehensive description of cellular strain including novel measurements of transverse strain and spatial heterogeneity of strain. Quantitative comparison with manual measurements of strain in image sequences indicated reliability of the developed approach. We suggest that the developed approach provides researchers with a novel tool to investigate contractility of cardiac myocytes at subcellular scale. In contrast to previously introduced methods for measuring cell shorting, the developed approach provides comprehensive information on the spatio-temporal distribution of 2-dimensional strain at micrometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DHF:

Dyssynchronous heart failure

EC:

Excitation–Contraction

References

  1. Abbruzzese, J., F. B. Sachse, M. Tristani-Firouzi, and M. C. Sanguinetti. Modification of hERG1 channel gating by Cd2+. J. Gen. Physiol. 136:203–224, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aiba, T., G. G. Hesketh, A. S. Barth, T. Liu, S. Daya, K. Chakir, V. L. Dimaano, T. P. Abraham, B. O’Rourke, F. G. Akar, D. A. Kass, and G. F. Tomaselli. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy. Circulation 119:1220–1230, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415:198–205, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Bub, G., P. Camelliti, C. Bollensdorff, D. J. Stuckey, G. Picton, R. A. Burton, K. Clarke, and P. Kohl. Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro. Am. J. Physiol. Heart Circ. Physiol. 298:H1616–H1625, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chakir, K., S. K. Daya, T. Aiba, R. S. Tunin, V. L. Dimaano, T. P. Abraham, K. M. Jaques-Robinson, E. W. Lai, K. Pacak, W. Z. Zhu, R. P. Xiao, G. F. Tomaselli, and D. A. Kass. Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy. Circulation 119:1231–1240, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chakir, K., S. K. Daya, R. S. Tunin, R. H. Helm, M. J. Byrne, V. L. Dimaano, A. C. Lardo, T. P. Abraham, G. F. Tomaselli, and D. A. Kass. Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization. Circulation 117:1369–1377, 2008.

    Article  PubMed  Google Scholar 

  7. Chakir, K., C. Depry, V. L. Dimaano, W. Z. Zhu, M. Vanderheyden, J. Bartunek, T. P. Abraham, G. F. Tomaselli, S. B. Liu, Y. K. Xiang, M. Zhang, E. Takimoto, N. Dulin, R. P. Xiao, J. Zhang, and D. A. Kass. Galphas-biased beta2-adrenergic receptor signaling from restoring synchronous contraction in the failing heart. Sci. Transl. Med. 3:100ra88, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Diaspro, A. Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances. New York: Wiley-Liss, 2002.

    Google Scholar 

  9. Goldman, Y. E. Measurement of sarcomere shortening in skinned fibers from frog muscle by white light diffraction. Biophys. J. 52:57–68, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldman, R. D., J. Swedlow, and D. L. Spector. Live Cell Imaging: A Laboratory Manual (2nd ed.). Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2010.

    Google Scholar 

  11. Harris, P. J., D. Stewart, M. C. Cullinan, L. M. Delbridge, L. Dally, and P. Grinwald. Rapid measurement of isolated cardiac muscle cell length using a line-scan camera. IEEE Trans. Biomed. Eng. 34:463–467, 1987.

    Article  CAS  PubMed  Google Scholar 

  12. Lecarpentier, Y., J. L. Martin, V. Claes, J. P. Chambaret, A. Migus, A. Antonetti, and P. Y. Hatt. Real-time kinetics of sacromere relaxation by laser diffraction. Circ. Res. 56:331–339, 1985.

    Article  CAS  PubMed  Google Scholar 

  13. Li, H., J. G. Lichter, T. Seidel, G. F. Tomaselli, J. H. Bridge, and F. B. Sachse. Cardiac resynchronization therapy reduces subcellular heterogeneity of ryanodine receptors, T-tubules, and Ca2 + sparks produced by dyssynchronous heart failure. Circ Heart Fail. 8:1105–1114, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lichter, J. G., E. Carruth, C. Mitchell, A. S. Barth, T. Aiba, D. A. Kass, G. F. Tomaselli, J. H. Bridge, and F. B. Sachse. Remodeling of the sarcomeric cytoskeleton in cardiac ventricular myocytes during heart failure and after cardiac resynchronization therapy. J. Mol. Cell. Cardiol. 72:186–195, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. London, B., and J. W. Krueger. Contraction in voltage-clamped, internally perfused single heart cells. J. Gen. Physiol. 88:475–505, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. McNary, T. G., J. H. Bridge, and F. B. Sachse. Strain transfer in ventricular cardiomyocytes to their transverse tubular system revealed by scanning confocal microscopy. Biophys. J. 100:L53–L55, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Modat, M., G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes, D. J. Hawkes, N. C. Fox, and S. Ourselin. Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98:278–284, 2010.

    Article  PubMed  Google Scholar 

  18. Philips, C. M., V. Duthinh, and S. R. Houser. A simple technique to measure the rate and magnitude of shortening of single isolated cardiac myocytes. IEEE Trans. Biomed. Eng. 33:929–934, 1986.

    Article  CAS  PubMed  Google Scholar 

  19. Rueckert, D., L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18:712–721, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Sachse, F. B. Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Berlin: Springer, 2004.

    Book  Google Scholar 

  21. Sachse, F. B., N. S. Torres, E. Savio-Galimberti, T. Aiba, D. A. Kass, G. F. Tomaselli, and J. H. Bridge. Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy. Circ. Res. 110:588–597, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwab, B. C., G. Seemann, R. A. Lasher, N. S. Torres, E. M. Wulfers, M. Arp, E. D. Carruth, J. H. Bridge, and F. B. Sachse. Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans. Med. Imaging 32:862–872, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seidel, T., T. Dräbing, G. Seemann, and F. B. Sachse. A semi-automatic approach for segmentation of three-dimensional microscopic image stacks of cardiac tissue. Lect. Notes Comput. Sci. 7945:7, 2013.

    Google Scholar 

  25. Shaw, J., L. Izu, and Y. Chen-Izu. Mechanical analysis of single myocyte contraction in a 3-D elastic matrix. PLoS ONE 8:e75492, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steadman, B. W., K. B. Moore, K. W. Spitzer, and J. H. B. Bridge. A video system for measuring motion in contracting heart cells. IEEE Trans. Biomed. Eng. 35:264–272, 1988.

    Article  CAS  PubMed  Google Scholar 

  27. Tameyasu, T., T. Toyoki, and H. Sugi. Nonsteady motion in unloaded contractions of single frog cardiac cells. Biophys. J. 48:461–465, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torres, N. S., F. B. Sachse, L. T. Izu, J. I. Goldhaber, K. W. Spitzer, and J. H. Bridge. A modified local control model for Ca2 + transients in cardiomyocytes: junctional flux is accompanied by release from adjacent non-junctional RyRs. J. Mol. Cell. Cardiol. 68:1–11, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grant R01 HL094464 (FBS) and the Nora Eccles Harrison Treadwell Foundation (FBS). We thank Mrs. Jayne Davis and Mrs. Nancy Allen for technical support as well as Dr. Thomas Seidel for discussions and help with the segmentation of cardiomyocytes. We acknowledge Dr. Marc Modat for providing us with information on the implementation of NiftyReg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank B. Sachse.

Additional information

Associate Editor Ellen Kuhl oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichter, J., Li, H. & Sachse, F.B. Measurement of Strain in Cardiac Myocytes at Micrometer Scale Based on Rapid Scanning Confocal Microscopy and Non-Rigid Image Registration. Ann Biomed Eng 44, 3020–3031 (2016). https://doi.org/10.1007/s10439-016-1593-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1593-7

Keywords

Navigation