Skip to main content
Log in

Development of Vibrational Culture Model Mimicking Vocal Fold Tissues

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The vocal folds (VFs) are connective tissues with complex matrix structures that provide the required mechanical properties for voice generation. VF injury leads to changes in tissue structure and properties, resulting in reduced voice quality. However, injury-induced biochemical changes and repair in scarred VF tissues have not been well characterized to date. To treat scarred VFs, it is essential to understand how physiological characteristics of VFs tissue change in response to external perturbation. In this study, we designed a simple vibrational culture model to mimic vibratory microenvironments observed in vivo. This model consists of a flexible culture plate, three linear actuators, a stereo splitter, and a function generator. Human vocal fold fibroblast (hVFF) monolayers were established on the flexible membrane, to which normal phonatory vibrations were delivered from linear actuators and a function generator. The hVFF monolayers were exposed to the vibrational stresses at a frequency of 205 Hz for 2, 6, and 10 h with maximum displacement of 47.1 μm, followed by a 6 h rest. We then observed the changes in cell morphology, cell viability, and gene expression related to extracellular matrix components. In our dynamic culture device mimicking normal phonatory frequencies, cell proliferation increased and expression of hyaluronic acid synthase 2 was downregulated in response to vibrational stresses. The results presented herein will be useful for evaluating cellular responses following VF injuries in the presence or absence of vibrational stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Brown, Jr, W. S., R. J. Morris, H. Hollien, and E. Howell. Speaking fundamental frequency characteristics as a function of age and professional singing. J. Voice 5:310–315, 1991.

    Article  Google Scholar 

  2. Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29:23–39, 2002.

    Article  CAS  PubMed  Google Scholar 

  3. Chan, R. W., S. D. Gray, and I. R. Titze. The importance of hyaluronic acid in vocal fold biomechanics. Otolaryngology 124:607–614, 2001.

    CAS  Google Scholar 

  4. Chen, X., and S. L. Thibeault. Novel isolation and biochemical characterization of immortalized fibroblasts for tissue engineering vocal fold lamina propria. Tissue Eng. Part C 15:201–212, 2009.

    Article  CAS  Google Scholar 

  5. Chiquet, M., A. S. Renedo, F. Huber, and M. Flück. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22:73–80, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Farran, A. J. E., S. S. Teller, F. Jia, R. J. Clifton, R. L. Duncan, and X. Jia. Design and characterization of a dynamic vibrational culture system. J. Tissue Eng. Regen. Med. 7:213–225, 2013.

    Article  CAS  PubMed  Google Scholar 

  7. Gaston, J., B. Quinchia Rios, R. Bartlett, C. Berchtold, and S. L. Thibeault. The response of vocal fold fibroblasts and mesenchymal stromal cells to vibration. PLoS One 7:e30965, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gray, S. D. Cellular physiology of the vocal folds. Otolaryngol. Clin. North Am. 33:679–697, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Gray, S. D., E. Hammond, and D. F. Hanson. Benign pathologic responses of the larynx. Ann. Otol. Rhinol. Laryngol. 104:13–18, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Henrich, N. Mirroring the voice from Garcia to the present day: some insights into singing voice registers. Logoped. Phoniatr. Vocol. 31:3–14, 2006.

    Article  PubMed  Google Scholar 

  11. Hirano, M., and K. Sato. Histological Color Atlas of the Human Larynx. San Diego: Singular Publishing Group, 1993.

    Google Scholar 

  12. Hirano, S. Current treatment of vocal fold scarring. Curr. Opin. Otolaryngol. Head Neck Surg. 13:143–147, 2005.

    Article  PubMed  Google Scholar 

  13. Hirschi, S. D., S. D. Gray, and S. L. Thibeault. Fibronectin: an interesting vocal fold protein. J. Voice 16:310–316, 2002.

    Article  PubMed  Google Scholar 

  14. Ishii, K., W. G. Zhai, M. Akita, and H. Hirose. Ultrastructure of the lamina propria of the human vocal fold. Acta Otolaryngol. 116:778–782, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Kutty, J. K., and K. Webb. Tissue engineering therapies for the vocal fold lamina propria. Tissue Eng. 15:249–262, 2009.

    Article  CAS  Google Scholar 

  16. Kutty, J. K., and K. Webb. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen Med. 4:62–72, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408, 2001.

    Article  CAS  PubMed  Google Scholar 

  18. Nagase, H., R. Visse, and G. Murphy. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69:562–573, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Sato, K., M. Hirano, and T. Nakashima. Fine structure of the human newborn and infant vocal fold mucosae. Ann. Otol. Rhinol. Laryngol. 110:417–424, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Smith, E., K. Verdolini, S. Gray, S. Nichols, J. Lemke, J. Barkmeier, H. Dove, and H. Hoffman. Effect of voice disorders on quality of life. J. Med. Speech. Lang. Pathol. 4:223–244, 1996.

    Google Scholar 

  21. Titze, I. R. On the relation between subglottal pressure and fundamental frequency in phonation. J. Acoust. Soc. Am. 85:901–906, 1989.

    Article  CAS  PubMed  Google Scholar 

  22. Titze, I. R., R. W. Hitchcock, K. Broadhead, K. Webb, W. Li, S. D. Gray, and P. A. Tresco. Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37:1521–1529, 2004.

    Article  PubMed  Google Scholar 

  23. Tran, Q. T., G. S. Berke, B. R. Gerratt, and J. Kreiman. Measurement of Young’s modulus in the in vivo human vocal folds. Ann. Otol. Rhinol. Laryngol. 102:584–591, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Wolchok, J. C., C. Brokopp, C. J. Underwood, and P. A. Tresco. The effect of bioreactor induced vibrational stimulation on extracellular matrix production from human derived fibroblasts. Biomaterials 30:327–335, 2009.

    Article  CAS  PubMed  Google Scholar 

  25. Wolchok, J. C., and P. A. Tresco. Using vocally inspired mechanical conditioning to enhance the synthesis of a cell-derived biomaterial. Ann. Biomed. Eng. 41:2358–2366, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by an Inha University Research Grant and National Research Foundation of Korea (NRF-2014R1A1A2053565).

Conflict of interest

The authors have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonjo Kwon.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Lim, JY. & Kwon, S. Development of Vibrational Culture Model Mimicking Vocal Fold Tissues. Ann Biomed Eng 44, 3136–3143 (2016). https://doi.org/10.1007/s10439-016-1587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1587-5

Keywords

Navigation