Skip to main content
Log in

Cell-Demanded VEGF Release via Nanocapsules Elicits Different Receptor Activation Dynamics and Enhanced Angiogenesis

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although the delivery of vascular endothelial growth factor (VEGF) with extended release profiles has consistently shown beneficial therapeutic effects compared with bolus delivery, [Martino, M. M., F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Muller, E. Livne, S. A. Eming, and J. A. Hubbell. Sci. Transl. Med. 3(100):100ra189, 2011; Martino, M. M., P. S. Briquez, A. Ranga, M. P. Lutolf, and J. A. Hubbell. Proc. Natl. Acad. Sci. USA. 110(12):4563–4568, 2013; Amiram, M., K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti. Proc. Natl. Acad. Sci. USA. 110(8):2792–2797, 2013] it remains unclear if the reason is solely due to the physical availability and the reduced degradation of the protein. Here we studied the activation of VEGF receptor 2 (VR-2) by sustained released VEGF compared with bolus delivered VEGF to unveil that sustained delivery system alters the dynamics of receptor activation and affects the actions of cells between sprouting and proliferation. We utilized a protein nanocapsule delivery strategy that releases VEGF as mediated by extracellular proteases. These protein nanocapsules were synthesized through an aqueous assembly of a nanogel-peptide shell around the protein, leading to one to two proteins encapsulated per nanocapsule. Receptor activation studies revealed differential dynamics of receptor activation for slowly released VEGF compared with bolus delivered VEGF. As expected sustained released VEGF via nanocapsules resulted in enhanced vascular sprouting in vitro and in vivo. These studies demonstrate the physical presentation of VEGF, in this case of a slow release with time, can affect its molecular mechanism of actions and cause alterations in cellular responses and therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Amiram, M., K. M. Luginbuhl, X. Li, M. N. Feinglos, and A. Chilkoti. Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control. Proc. Natl. Acad. Sci. USA 110(8):2792–2797, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson, S. M., B. Shergill, Z. T. Barry, E. Manousiouthakis, T. T. Chen, E. Botvinick, M. O. Platt, M. L. Iruela-Arispe, and T. Segura. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF. Integr. Biol. (Camb) 3(9):887–896, 2011.

    Article  CAS  Google Scholar 

  3. Anderson, S. M., S. N. Siegman, and T. Segura. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 32(30):7432–7443, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brooks, P. C., R. A. F. Clark, and D. A. Cheresh. Requirement of vascular integrin alpha(V)beta(3) for angiogenesis. Science 264(5158):569–571, 1994.

    Article  CAS  PubMed  Google Scholar 

  5. Brudno, Y., A. B. Ennett-Shepard, R. R. Chen, M. Aizenberg, and D. J. Mooney. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 34(36):9201–9209, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, T. T., A. Luque, S. Lee, S. M. Anderson, T. Segura, and M. L. Iruela-Arispe. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188(4):595–609, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galiano, R. D., Michaels Jt, M. Dobryansky, J. P. Levine, and G. C. Gurtner. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 12(4):485–492, 2004.

    Article  PubMed  Google Scholar 

  8. Hendel, R. C., T. D. Henry, K. Rocha-Singh, J. M. Isner, D. J. Kereiakes, F. J. Giordano, M. Simons, and R. O. Bonow. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation 101(2):118–121, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Henry, T. D., B. H. Annex, G. R. McKendall, M. A. Azrin, J. J. Lopez, F. J. Giordano, P. K. Shah, J. T. Willerson, R. L. Benza, D. S. Berman, C. M. Gibson, A. Bajamonde, A. C. Rundle, J. Fine, and E. R. McCluskey. The VIVA trial: vascular endothelial growth factor in Ischemia for vascular angiogenesis. Circulation 107(10):1359–1365, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. Kang, J., O. Lambert, M. Ausborn, and S. P. Schwendeman. Stability of proteins encapsulated in injectable and biodegradable poly(lactide-co-glycolide)-glucose millicylinders. Int. J. Pharm. 357(1–2):235–243, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kobsa, S., and W. M. Saltzman. Bioengineering approaches to controlled protein delivery. Pediatr. Res. 63(5):513–519, 2008.

    Article  PubMed  Google Scholar 

  12. Kumar, T. R., K. Soppimath, and S. K. Nachaegari. Novel delivery technologies for protein and peptide therapeutics. Curr. Pharm. Biotechnol. 7(4):261–276, 2006.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S., S. M. Jilani, G. V. Nikolova, D. Carpizo, and M. L. Iruela-Arispe. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169(4):681–691, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leung, D. W., G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara. Vascular endothelial growth-factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309, 1989.

    Article  CAS  PubMed  Google Scholar 

  15. Liang, G., Z. Yang, R. Zhang, L. Li, Y. Fan, Y. Kuang, Y. Gao, T. Wang, W. W. Lu, and B. Xu. Supramolecular hydrogel of a D-amino acid dipeptide for controlled drug release in vivo. Langmuir 25(15):8419–8422, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Martino, M. M., P. S. Briquez, A. Ranga, M. P. Lutolf, and J. A. Hubbell. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA 110(12):4563–4568, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martino, M. M., F. Tortelli, M. Mochizuki, S. Traub, D. Ben-David, G. A. Kuhn, R. Muller, E. Livne, S. A. Eming, and J. A. Hubbell. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3(100):100ra189, 2011.

    Article  Google Scholar 

  18. Nagy, K. J., M. C. Giano, A. Jin, D. J. Pochan, and J. P. Schneider. Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J. Am. Chem. Soc. 133(38):14975–14977, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura, T., T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi, A. Sugimura, K. Tashiro, and S. Shimizu. Molecular-cloning and expression of human hepatocyte growth-factor. Nature 342(6248):440–443, 1989.

    Article  CAS  PubMed  Google Scholar 

  20. Nakatsu, M. N., and C. C. Hughes. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 443:65–82, 2008.

    Article  CAS  PubMed  Google Scholar 

  21. Nakatsu, M. N., R. C. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Perez-del-Pulgar, P. M. Carpenter, and C. C. Hughes. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc. Res. 66(2):102–112, 2003.

    Article  CAS  PubMed  Google Scholar 

  22. Ozawa, C. R., A. Banfi, N. L. Glazer, G. Thurston, M. L. Springer, P. E. Kraft, D. M. McDonald, and H. M. Blau. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Investig. 113(4):516–527, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ropper, A. H., K. C. Gorson, C. L. Gooch, D. H. Weinberg, A. Pieczek, J. H. Ware, J. Kershen, A. Rogers, D. Simovic, P. Schratzberger, R. Kirchmair, and D. Losordo. Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann. Neurol. 65(4):386–393, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rosengart, T. K., W. V. Johnson, R. Friesel, R. Clark, and T. Maciag. Heparin protects heparin-binding growth factor-I from proteolytic inactivation in vitro. Biochem. Biophys. Res. Commun. 152(1):432–440, 1988.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt, C., F. Bladt, S. Goedecke, V. Brinkmann, W. Zschiesche, M. Sharpe, E. Gherardi, and C. Birchmeier. Scatter factor/hepatocyte growth-factor is essential for liver development. Nature 373(6516):699–702, 1995.

    Article  CAS  PubMed  Google Scholar 

  26. van der Walle, C. F., G. Sharma, and M. Ravi Kumar. Current approaches to stabilising and analysing proteins during microencapsulation in PLGA. Expert Opin. Drug Deliv. 6(2):177–186, 2009.

    Article  PubMed  Google Scholar 

  27. Vemuri, S., I. Beylin, V. Sluzky, P. Stratton, G. Eberlein, and Y. J. Wang. The stability of bFGF against thermal denaturation. J. Pharm. Pharmacol. 46(6):481–486, 1994.

    Article  CAS  PubMed  Google Scholar 

  28. von Degenfeld, G., A. Banfi, M. L. Springer, R. A. Wagner, J. Jacobi, C. R. Ozawa, M. J. Merchant, J. P. Cooke, and H. M. Blau. Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. Faseb. J. 20(14):2657–2659, 2006.

    Article  Google Scholar 

  29. Wen, J., S. M. Anderson, J. Du, M. Yan, J. Wang, M. Shen, Y. Lu, and T. Segura. Controlled protein delivery based on enzyme-responsive nanocapsules. Adv. Mater. 23(29):4549–4553, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan, M., J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, S. Priceman, L. Wu, H. Zhou, Z. Liu, T. Segura, Y. Tang, and Y. Lu. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 5:48–53, 2009.

    Article  PubMed  Google Scholar 

  31. Zhang, J. C., J. Wojta, and B. R. Binder. Growth and fibrinolytic parameters of human umbilical vein endothelial cells seeded onto cardiovascular grafts. J. Thorac. Cardiovasc. Surg. 109(6):1059–1065, 1995.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, G., S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat. Biotechnol. 18(1):52–57, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, S., L. Nih, S. T. Carmichael, Y. Lu, and T. Segura. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 27(24):3620–3625, 2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Talar Tokatlian, Dr. Sean Anderson, Shannon Stephens and Angela Wong for their support. The authors would also like to thank Genentech for generously providing us with VEGF. This work was funded by the American Heart Association 11GRNT7630021AHA and the National Institutes of Health R01HL110592 and R01NS079691. We also acknowledge NSF IGERT: Materials Creation Training Program (MCTP)—DGE-0654431, the California NanoSystems Institute (CNSI), and the use of instruments at the Electron Imaging Center for NanoMachines supported by NIH (1S10RR23057 to ZHZ) and CNSI at UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Segura.

Additional information

Associate Editor Akhilesh K Gaharwar oversaw the review of this article.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Segura, T. Cell-Demanded VEGF Release via Nanocapsules Elicits Different Receptor Activation Dynamics and Enhanced Angiogenesis. Ann Biomed Eng 44, 1983–1992 (2016). https://doi.org/10.1007/s10439-016-1581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1581-y

Keywords

Navigation