Annals of Biomedical Engineering

, Volume 44, Issue 9, pp 2724–2736 | Cite as

Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis

  • Koohyar Vahidkhah
  • Dan Cordasco
  • Mostafa Abbasi
  • Liang Ge
  • Elaine Tseng
  • Prosenjit Bagchi
  • Ali N. Azadani


Valvular hemolysis and thrombosis are common complications associated with stenotic heart valves. This study aims to determine the extent to which hemodynamics induce such traumatic events. The viscous shear stress downstream of a severely calcified bioprosthetic valve was evaluated via in vitro 2D particle image velocimetry measurements. The blood cell membrane response to the measured stresses was then quantified using 3D immersed-boundary computational simulations. The shear stress level at the boundary layer of the jet flow formed downstream of the valve orifice was observed to reach a maximum of 1000–1700 dyn/cm2, which was beyond the threshold values reported for platelet activation (100–1000 dyn/cm2) and within the range of thresholds reported for red blood cell (RBC) damage (1000–2000 dyn/cm2). Computational simulations demonstrated that the resultant tensions at the RBC membrane surface were unlikely to cause instant rupture, but likely to lead to membrane plastic failure. The resultant tensions at the platelet surface were also calculated and the potential damage was discussed. It was concluded that although shear-induced thrombotic trauma is very likely in stenotic heart valves, instant hemolysis is unlikely and the shear-induced damage to RBCs is mostly subhemolytic.


Valvular hemolysis and thrombosis Flow-induced blood cell damage Particle image velocimetry 3D Immersed-boundary method 



This work was supported by the American Heart Association and University of Denver Postdoctoral Fellowship Award. We thank Bruce Van Daman from Edwards Lifesciences for providing us with the degenerated PERIMOUNT bioprosthesis. Computational support from SOE HPC at Rutgers University, School of Engineering is acknowledged.

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary material

10439_2016_1577_MOESM1_ESM.avi (4.9 mb)
Supplementary material 1 (AVI 4969 kb)
10439_2016_1577_MOESM2_ESM.avi (7.5 mb)
Supplementary material 2 (AVI 7664 kb)


  1. 1.
    Anderson, G. H., J. D. Hellums, J. L. Moake, and C. P. Alfrey, Jr. Platelet lysis and aggregation in shear fields. Blood Cells 4:499–511, 1978.PubMedGoogle Scholar
  2. 2.
    Azadani, A. N., N. Jaussaud, P. B. Matthews, L. Ge, T. A. M. Chuter, and E. E. Tseng. Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses. Interact. CardioVasc. Thorac. Surg. 11:70–77, 2010.CrossRefPubMedGoogle Scholar
  3. 3.
    Bacher, R. P., and M. C. Williams. Hemolysis in capillary flow. J. Lab. Clin. Med. 76:485, 1970.PubMedGoogle Scholar
  4. 4.
    Becker, R. C., P. Eisenberg, and A. G. G. Turpie. Pathobiologic features and prevention of thrombotic complications associated with prosthetic heart valves: fundamental principles and the contribution of platelets and thrombin. Am. Heart J. 141:1025–1037, 2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Browne, P., A. Ramuzat, R. Saxena, and A. P. Yoganathan. Experimental investigation of the steady flow downstream of the St. Jude bileaflet heart valve: a comparison between laser Doppler velocimetry and particle image velocimetry techniques. Ann. Biomed. Eng. 28:39–47, 2000.CrossRefPubMedGoogle Scholar
  6. 6.
    Cordasco, D., and P. Bagchi. Intermittency and synchronized motion of red blood cell dynamics in shear flow. J. Fluid Mech. 759:472–488, 2014.CrossRefGoogle Scholar
  7. 7.
    Dimitrow, P. P., M. Hlawaty, A. Undas, M. Sniezek-Maciejewska, B. Sobien, E. Stepien, and W. Tracz. Effect of aortic valve stenosis on haemostasis is independent from vascular atherosclerotic burden. Atherosclerosis 204:103–108, 2009.CrossRefGoogle Scholar
  8. 8.
    Doddi, S. K., and P. Bagchi. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79:046318, 2009.CrossRefGoogle Scholar
  9. 9.
    Dupin, M. M., I. Halliday, C. M. Care, L. Alboul, and L. L. Munn. Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75:066707, 2007.CrossRefGoogle Scholar
  10. 10.
    Evans, E. A. Bending elastic-modulus of red-blood-cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43:27–30, 1983.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Evans, E. A., and R. M. Hochmuth. Membrane viscoplastic flow. Biophys. J. 16:13–26, 1976.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Evans, E. A., R. Waugh, and L. Melnik. Elastic area compressibility modulus of red-cell membrane. Biophys. J. 16:585–595, 1976.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ezzeldin, H. M., M. D. de Tullio, M. Vanella, S. D. Solares, and E. Balaras. A strain-based model for mechanical hemolysis based on a coarse-grained red blood cell model. Ann. Biomed. Eng. 43:1398–1409, 2015.CrossRefPubMedGoogle Scholar
  14. 14.
    Fedosov, D. A., H. Lei, B. Caswell, S. Suresh, and G. E. Karniadakis. Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput. Biol. 7:e1002270, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fischer, T. M., M. Stohrliesen, and H. Schmidschonbein. Red-cell as a fluid droplet—tank tread-like motion of human erythrocyte-membrane in shear-flow. Science 202:894–896, 1978.CrossRefPubMedGoogle Scholar
  16. 16.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.CrossRefGoogle Scholar
  17. 17.
    Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36:276–297, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Gitz, E., C. D. Koopman, A. Giannas, C. A. Koekman, D. J. van den Heuvel, H. Deckmyn, J. W. Akkerman, H. C. Gerritsen, and R. T. Urbanus. Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibalpha. Haematologica 98:1810–1818, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Helfrich, W. Elastic properties of lipid bilayers—theory and possible experiments. Zeitschrift Fur Naturforschung C-J. Biosci. C 28:693–703, 1973.Google Scholar
  20. 20.
    Hellums, J. D. 1993 Whitaker lecture—biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.CrossRefPubMedGoogle Scholar
  21. 21.
    Hung, T. C., R. M. Hochmuth, J. H. Joist, and S. P. Sutera. Shear-induced aggregation and lysis of platelets. Trans. Am. Soc. Artif. Intern. Organs 22:285–291, 1976.PubMedGoogle Scholar
  22. 22.
    Jones, S. A. A relationship between reynolds stresses and viscous dissipation—implications to red-cell damage. Ann. Biomed. Eng. 23:21–28, 1995.CrossRefPubMedGoogle Scholar
  23. 23.
    Kawase, I., T. Matsuo, K. Sasayama, H. Suzuki, and H. Nishikawa. Hemolytic anemia with aortic stenosis resolved by urgent aortic valve replacement. Ann. Thorac. Surg. 86:645–646, 2008.CrossRefPubMedGoogle Scholar
  24. 24.
    Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. H. Alavi, R. Tranquillo, L. P. Dasi, C. A. Simmons, K. J. Grande-Allen, C. J. Goergen, F. Baaijens, S. H. Little, S. Canic, and B. Griffith. Emerging trends in heart valve engineering: Part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43:2314–2333, 2015.CrossRefPubMedGoogle Scholar
  25. 25.
    Leung SL L. Y., Bluestein D, Slepian MJ. Dielectrophoresis-mediated electrodeformation as a means of determining individual platelet stiffness. Ann. Biomed. Eng. 2015.Google Scholar
  26. 26.
    Leverett, L. B., E. C. Lynch, C. P. Alfrey, and J. D. Hellums. Red blood-cell damage by shear-stress. Biophys. J. 12:257, 1972.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34:1417–1427, 2001.CrossRefPubMedGoogle Scholar
  28. 28.
    Maxwell, M. J., S. M. Dopheide, S. J. Turner, and S. P. Jackson. Shear induces a unique series of morphological changes in translocating platelets—effects of morphology on translocation dynamics. Arterioscler. Thromb. Vasc. Biol. 26:663–669, 2006.CrossRefPubMedGoogle Scholar
  29. 29.
    McGrath, B., G. Mealing, and M. R. Labrosse. A mechanobiological investigation of platelets. Biomech. Model. Mechanobiol. 10:473–484, 2011.CrossRefPubMedGoogle Scholar
  30. 30.
    Nanjappa, B. N., H. K. Chang, and C. A. Glomski. Trauma of the erythrocyte membrane associated with low shear stress. Biophys. J. 13:1212–1222, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohta, Y., H. Okamoto, M. Kanno, and T. Okuda. Atomic force microscopic observation of mechanically traumatized erythrocytes. Artif. Organs 26:10–17, 2002.CrossRefPubMedGoogle Scholar
  32. 32.
    Omori, T., T. Ishikawa, Y. Imai, and T. Yamaguchi. Membrane tension of red blood cells pairwisely interacting in simple shear flow. J. Biomech. 46:548–553, 2013.CrossRefPubMedGoogle Scholar
  33. 33.
    Peskin, C. S., and D. M. Mcqueen. Modeling prosthetic heart-valves for numerical-analysis of blood-flow in the heart. J. Comput. Phys. 37:113–132, 1980.CrossRefGoogle Scholar
  34. 34.
    Pothapragada S., P. Zhang, J. Sheriff, M. Livelli, M. J. Slepian, Y. F. Deng and D. Bluestein. A phenomenological particle-based platelet model for simulating filopodia formation during early activation. International J. Numer. Methods Biomed. Eng. 31: 2015.Google Scholar
  35. 35.
    Pozrikidis, C. Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568:161–172, 2006.CrossRefGoogle Scholar
  36. 36.
    Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12:113–125, 1979.CrossRefPubMedGoogle Scholar
  37. 37.
    Rooney, J. A. Hemolysis near an ultrasonically pulsating gas bubble. Science 169:869–871, 1970.CrossRefPubMedGoogle Scholar
  38. 38.
    Saikrishnan, N., C. H. Yap, N. C. Milligan, N. V. Vasilyev, and A. P. Yoganathan. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40:1760–1775, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Sandza, J. G., R. E. Clark, C. S. Weldon, and S. P. Sutera. Subhemolytic trauma of erythrocytes: recognition and sequestration by the spleen as a function of shear. Trans. Am. Soc. Artif. Intern. Organs 20:457–462, 1974.PubMedGoogle Scholar
  40. 40.
    Seaman, C., A. G. Akingba, and P. Sucosky. Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves. J. Biomech. Eng.-Trans. ASME 136:041001, 2014.CrossRefGoogle Scholar
  41. 41.
    Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. Strain energy function of red blood-cell membranes. Biophys. J. 13:245–280, 1973.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Skotheim, J. M., and T. W. Secomb. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98:078301, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Sutera, S. P. Flow-induced trauma to blood-cells. Circ. Res. 41:2–8, 1977.CrossRefPubMedGoogle Scholar
  45. 45.
    Sutera, S. P., P. A. Croce, and M. Mehrjard. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear-flow. Trans. Am. Soc. Artif. Intern. Organs 18:335–341, 1972.CrossRefPubMedGoogle Scholar
  46. 46.
    Sutera, S. P., and M. H. Mehrjardi. Deformation and fragmentation of human red blood-cells in turbulent shear-flow. Biophys. J. 15:1–10, 1975.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Transontay, R., S. P. Sutera, G. I. Zahalak, and P. R. Rao. Membrane stress and internal-pressure in a red-blood-cell freely suspended in a shear-flow. Biophys. J. 51:915–924, 1987.CrossRefGoogle Scholar
  48. 48.
    Tsuji, A., M. Tanabe, K. Onishi, T. Kitamura, T. Okinaka, M. Ito, N. Isaka, and T. Nakano. Intravascular hemolysis in aortic stenosis. Intern. Med. 43:935–938, 2004.CrossRefPubMedGoogle Scholar
  49. 49.
    Vahidkhah, K., S. L. Diamond, and P. Bagchi. Hydrodynamic interaction between a platelet and an erythrocyte: effect of erythrocyte deformability, dynamics, and wall proximity. J. Biomech. Eng. 135:51002, 2013.CrossRefPubMedGoogle Scholar
  50. 50.
    Vahidkhah, K., S. L. Diamond, and P. Bagchi. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106:2529–2540, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Waugh, R. E. Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure. Biophys. J. 39:273–278, 1982.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    White, J. G., S. M. Burris, D. Tukey, C. Smith, and C. C. Clawson. Micropipette aspiration of human-platelets—influence of microtubules and actin-filaments on deformability. Blood 64:210–214, 1984.PubMedGoogle Scholar
  53. 53.
    Williams, A. R. Release of serotonin from human platelets by acoustic microstreaming. J. Acoust. Soc. Am. 56:1640–1649, 1974.CrossRefPubMedGoogle Scholar
  54. 54.
    Xu, Z. L., J. Lioi, J. Mu, M. M. Kamocka, X. M. Liu, D. Z. Chen, E. D. Rosen, and M. Alber. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98:1723–1732, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yazdani, A. Z. K., and P. Bagchi. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys. Rev. E 84:026314, 2011.CrossRefGoogle Scholar
  56. 56.
    Zhang, P., C. Gao, N. Zhang, M. J. Slepian, Y. F. Deng, and D. Bluestein. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell. Mol. Bioeng. 7:552–574, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Koohyar Vahidkhah
    • 1
  • Dan Cordasco
    • 2
  • Mostafa Abbasi
    • 1
  • Liang Ge
    • 3
  • Elaine Tseng
    • 3
  • Prosenjit Bagchi
    • 2
  • Ali N. Azadani
    • 1
  1. 1.Cardiac Biomechanics Laboratory, Department of Mechanical and Materials EngineeringUniversity of DenverDenverUSA
  2. 2.Mechanical and Aerospace Engineering Department, RutgersThe State University of New JerseyPiscatawayUSA
  3. 3.Department of SurgeryUniversity of California at San Francisco Medical Center (UCSF)San FranciscoUSA

Personalised recommendations