Annals of Biomedical Engineering

, Volume 44, Issue 9, pp 2724–2736

Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis

  • Koohyar Vahidkhah
  • Dan Cordasco
  • Mostafa Abbasi
  • Liang Ge
  • Elaine Tseng
  • Prosenjit Bagchi
  • Ali N. Azadani
Article

DOI: 10.1007/s10439-016-1577-7

Cite this article as:
Vahidkhah, K., Cordasco, D., Abbasi, M. et al. Ann Biomed Eng (2016) 44: 2724. doi:10.1007/s10439-016-1577-7
  • 585 Downloads

Abstract

Valvular hemolysis and thrombosis are common complications associated with stenotic heart valves. This study aims to determine the extent to which hemodynamics induce such traumatic events. The viscous shear stress downstream of a severely calcified bioprosthetic valve was evaluated via in vitro 2D particle image velocimetry measurements. The blood cell membrane response to the measured stresses was then quantified using 3D immersed-boundary computational simulations. The shear stress level at the boundary layer of the jet flow formed downstream of the valve orifice was observed to reach a maximum of 1000–1700 dyn/cm2, which was beyond the threshold values reported for platelet activation (100–1000 dyn/cm2) and within the range of thresholds reported for red blood cell (RBC) damage (1000–2000 dyn/cm2). Computational simulations demonstrated that the resultant tensions at the RBC membrane surface were unlikely to cause instant rupture, but likely to lead to membrane plastic failure. The resultant tensions at the platelet surface were also calculated and the potential damage was discussed. It was concluded that although shear-induced thrombotic trauma is very likely in stenotic heart valves, instant hemolysis is unlikely and the shear-induced damage to RBCs is mostly subhemolytic.

Keywords

Valvular hemolysis and thrombosis Flow-induced blood cell damage Particle image velocimetry 3D Immersed-boundary method 

Supplementary material

10439_2016_1577_MOESM1_ESM.avi (4.9 mb)
Supplementary material 1 (AVI 4969 kb)
10439_2016_1577_MOESM2_ESM.avi (7.5 mb)
Supplementary material 2 (AVI 7664 kb)

Funding information

Funder NameGrant NumberFunding Note
American Heart Association
  • 0825192F
University of Denver Postdoctoral Fellowship Award

    Copyright information

    © Biomedical Engineering Society 2016

    Authors and Affiliations

    • Koohyar Vahidkhah
      • 1
    • Dan Cordasco
      • 2
    • Mostafa Abbasi
      • 1
    • Liang Ge
      • 3
    • Elaine Tseng
      • 3
    • Prosenjit Bagchi
      • 2
    • Ali N. Azadani
      • 1
    1. 1.Cardiac Biomechanics Laboratory, Department of Mechanical and Materials EngineeringUniversity of DenverDenverUSA
    2. 2.Mechanical and Aerospace Engineering Department, RutgersThe State University of New JerseyPiscatawayUSA
    3. 3.Department of SurgeryUniversity of California at San Francisco Medical Center (UCSF)San FranciscoUSA

    Personalised recommendations