Acharya, C., A. Adesida, P. Zajac, M. Mumme, J. Riesle, I. Martin, and A. Barbero. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J. Cell. Physiol. 227:88–97, 2012.
CAS
PubMed
Article
Google Scholar
Adesida, A. B., A. Mulet-Sierra, and N. M. Jomha. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res. Ther. 3:9, 2012.
CAS
PubMed
PubMed Central
Article
Google Scholar
Afizah, H., Z. Yang, J. H. Hui, H. W. Ouyang, and E. H. Lee. A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 13:659–666, 2007.
CAS
PubMed
Article
Google Scholar
Ahmed, N., R. Dreier, A. Gopferich, J. Grifka, and S. Grassel. Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells. Cell Physiol. Biochem. 20:665–678, 2007.
CAS
PubMed
Article
Google Scholar
Alsalameh, S., R. Amin, T. Gemba, and M. Lotz. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50:1522–1532, 2004.
PubMed
Article
Google Scholar
Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21:451–457, 2003.
CAS
PubMed
Article
Google Scholar
Arufe, M. C., A. De la Fuente, I. Fuentes, F. J. De Toro, and F. J. Blanco. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J. Cell Biochem. 111:834–845, 2010.
CAS
PubMed
Article
Google Scholar
Aung, A., G. Gupta, G. Majid, and S. Varghese. Osteoarthritic chondrocyte-secreted morphogens induce chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheum. 63:148–158, 2011.
PubMed
PubMed Central
Article
Google Scholar
Baksh, D., L. Song, and R. S. Tuan. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J. Cell Mol. Med. 8:301–316, 2004.
CAS
PubMed
Article
Google Scholar
Baksh, D., R. Yao, and R. S. Tuan. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392, 2007.
CAS
PubMed
Article
Google Scholar
Barbero, A., S. Grogan, D. Schafer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr. Cartil. 12:476–484, 2004.
PubMed
Article
Google Scholar
Bark, S., T. Piontek, P. Behrens, S. Mkalaluh, D. Varoga, and J. Gille. Enhanced microfracture techniques in cartilage knee surgery: fact or fiction? World J. Orthop. 5:444–449, 2014.
PubMed
PubMed Central
Article
Google Scholar
Bartlett, W., J. A. Skinner, C. R. Gooding, R. W. Carrington, A. M. Flanagan, T. W. Briggs, and G. Bentley. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J. Bone Joint Surg. Br. 87:640–645, 2005.
CAS
PubMed
Article
Google Scholar
Bathe, M., G. C. Rutledge, A. J. Grodzinsky, and B. Tidor. A coarse-grained molecular model for glycosaminoglycans: application to chondroitin, chondroitin sulfate, and hyaluronic acid. Biophys. J. 88:3870–3887, 2005.
CAS
PubMed
PubMed Central
Article
Google Scholar
Batty, L., S. Dance, S. Bajaj, and B. J. Cole. Autologous chondrocyte implantation: an overview of technique and outcomes. ANZ J. Surg. 81:18–25, 2011.
PubMed
Article
Google Scholar
Baxter, M. A., R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22:675–682, 2004.
CAS
PubMed
Article
Google Scholar
Beiser, I. H., and I. O. Kanat. Subchondral bone drilling: a treatment for cartilage defects. J. Foot Surg. 29:595–601, 1990.
CAS
PubMed
Google Scholar
Bernstein, P., M. Dong, S. Graupher, D. Corbeil, M. Gelinsky, K. P. Gunther, and S. Fickert. Sox9 expression of alginate-encapsulated chondrocytes is stimulated by low cell density. J. Biomed. Mater. Res. A 91:910–918, 2009.
PubMed
Article
CAS
Google Scholar
Bian, L., D. Y. Zhai, R. L. Mauck, and J. A. Burdick. Coculture of human mesenchymal stem cells and articular chondrocytes reduces hypertrophy and enhances functional properties of engineered cartilage. Tissue Eng. Part A 17:1137–1145, 2011.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bieback, K., S. Kern, A. Kocaomer, K. Ferlik, and P. Bugert. Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Biomed. Mater. Eng. 18:S71–S76, 2008.
CAS
PubMed
Google Scholar
Bohme, K., K. H. Winterhalter, and P. Bruckner. Terminal differentiation of chondrocytes in culture is a spontaneous process and is arrested by transforming growth factor-beta 2 and basic fibroblast growth factor in synergy. Exp. Cell Res. 216:191–198, 1995.
CAS
PubMed
Article
Google Scholar
Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895, 1994.
CAS
PubMed
Article
Google Scholar
Buckwalter, J. A. Articular cartilage injuries. Clin. Orthop. Relat. Res. 402:21–37, 2002.
PubMed
Article
Google Scholar
Buravkova, L. B., E. R. Andreeva, V. Gogvadze, and B. Zhivotovsky. Mesenchymal stem cells and hypoxia: where are we? Mitochondrion 19 Pt A:105–112, 2014.
CAS
PubMed
Article
Google Scholar
Candrian, C., D. Vonwil, A. Barbero, E. Bonacina, S. Miot, J. Farhadi, D. Wirz, S. Dickinson, A. Hollander, M. Jakob, Z. Li, M. Alini, M. Heberer, and I. Martin. Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum. 58:197–208, 2008.
CAS
PubMed
Article
Google Scholar
Chang, Q., W. D. Cui, and W. M. Fan. Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components. Braz. J. Med. Biol. Res. 44:303–310, 2011.
CAS
Article
Google Scholar
Chen, W. H., M. T. Lai, A. T. Wu, C. C. Wu, J. G. Gelovani, C. T. Lin, S. C. Hung, W. T. Chiu, and W. P. Deng. In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis Rheum. 60:450–459, 2009.
CAS
PubMed
Article
Google Scholar
Chen, F. H., K. T. Rousche, and R. S. Tuan. Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat. Clin. Pract. Rheumatol. 2:373–382, 2006.
CAS
PubMed
Article
Google Scholar
Cherubino, P., F. A. Grassi, P. Bulgheroni, and M. Ronga. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J. Orthop. Surg. 11:10–15, 2003.
CAS
Google Scholar
Cheung, W. H., K. M. Lee, K. P. Fung, P. Y. Lui, and K. S. Leung. TGF-beta1 is the factor secreted by proliferative chondrocytes to inhibit neo-angiogenesis. J. Cell Biochem. Suppl. 36:79–88, 2001.
PubMed
Google Scholar
Chu, C. R., M. Szczodry, and S. Bruno. Animal models for cartilage regeneration and repair. Tissue Eng. Part B Rev. 16:105–115, 2010.
PubMed
PubMed Central
Article
Google Scholar
Cook, J. L., C. T. Hung, K. Kuroki, A. M. Stoker, C. R. Cook, F. M. Pfeiffer, S. L. Sherman, and J. P. Stannard. Animal models of cartilage repair. Bone Joint Res. 3:89–94, 2014.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cooke, M. E., A. A. Allon, T. Cheng, A. C. Kuo, H. T. Kim, T. P. Vail, R. S. Marcucio, R. A. Schneider, J. C. Lotz, and T. Alliston. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthr. Cartil. 19:1210–1218, 2011.
CAS
PubMed
PubMed Central
Article
Google Scholar
da Silva Meirelles, L., P. C. Chagastelles, and N. B. Nardi. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119:2204–2213, 2006.
CAS
Article
Google Scholar
Dahlin, R. L., L. A. Kinard, J. Lam, C. J. Needham, S. Lu, F. K. Kasper, and A. G. Mikos. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35:7460–7469, 2014.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dahlin, R. L., M. Ni, V. V. Meretoja, F. K. Kasper, and A. G. Mikos. TGF-beta3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds. Biomaterials 35:123–132, 2014.
CAS
PubMed
Article
Google Scholar
De Bari, C., F. Dell’Accio, and F. P. Luyten. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 50:142–150, 2004.
PubMed
Article
CAS
Google Scholar
De Bari, C., F. Dell’Accio, P. Tylzanowski, and F. P. Luyten. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44:1928–1942, 2001.
PubMed
Article
Google Scholar
Diao, H. J., C. W. Yeung, C. H. Yan, G. C. Chan, and B. P. Chan. Bidirectional and mutually beneficial interactions between human mesenchymal stem cells and osteoarthritic chondrocytes in micromass co-cultures. Regen. Med. 8:257–269, 2013.
CAS
PubMed
Article
Google Scholar
Dickhut, A., K. Pelttari, P. Janicki, W. Wagner, V. Eckstein, M. Egermann, and W. Richter. Calcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J. Cell Physiol. 219:219–226, 2009.
CAS
PubMed
Article
Google Scholar
Djouad, F., B. Delorme, M. Maurice, C. Bony, F. Apparailly, P. Louis-Plence, F. Canovas, P. Charbord, D. Noel, and C. Jorgensen. Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res. Ther. 9:R33, 2007.
PubMed
PubMed Central
Article
CAS
Google Scholar
Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317, 2006.
CAS
PubMed
Article
Google Scholar
Erices, A., P. Conget, and J. J. Minguell. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109:235–242, 2000.
CAS
PubMed
Article
Google Scholar
Fehrer, C., and G. Lepperdinger. Mesenchymal stem cell aging. Exp. Gerontol. 40:926–930, 2005.
CAS
PubMed
Article
Google Scholar
Fischer, J., A. Dickhut, M. Rickert, and W. Richter. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 62:2696–2706, 2010.
CAS
PubMed
Article
Google Scholar
Foldager, C. B. Advances in autologous chondrocyte implantation and related techniques for cartilage repair. Dan. Med. J. 60:B4600, 2013.
PubMed
Google Scholar
Foldager, C. B., C. Bunger, A. B. Nielsen, M. Ulrich-Vinther, S. Munir, H. Everland, and M. Lind. Dermatan sulphate in methoxy polyethylene glycol-polylactide-co-glycolic acid scaffolds upregulates fibronectin gene expression but has no effect on in vivo osteochondral repair. Int. Orthop. 36:1507–1513, 2012.
PubMed
PubMed Central
Article
Google Scholar
Foldager, C. B., S. Munir, M. Ulrik-Vinther, K. Soballe, C. Bunger, and M. Lind. Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol. Biol. 10:1471–2199, 2009.
Article
CAS
Google Scholar
Foldager, C. B., A. B. Nielsen, S. Munir, M. Ulrich-Vinther, K. Soballe, C. Bunger, and M. Lind. Combined 3D and hypoxic culture improves cartilage-specific gene expression in human chondrocytes. Acta Orthop. 82:234–240, 2011.
PubMed
PubMed Central
Article
Google Scholar
Francioli, S. E., C. Candrian, K. Martin, M. Heberer, I. Martin, and A. Barbero. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. J. Biomed. Mater. Res. A 95:924–931, 2010.
PubMed
Article
CAS
Google Scholar
Fraser, J. K., I. Wulur, Z. Alfonso, and M. H. Hedrick. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24:150–154, 2006.
CAS
PubMed
Article
Google Scholar
Fu, W. L., C. Y. Zhou, and J. K. Yu. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am. J. Sports Med. 10:10, 2013.
Google Scholar
Giovannini, S., J. Diaz-Romero, T. Aigner, P. Heini, P. Mainil-Varlet, and D. Nesic. Micromass co-culture of human articular chondrocytes and human bone marrow mesenchymal stem cells to investigate stable neocartilage tissue formation in vitro. Eur. Cells Mater. 20:245–259, 2010.
CAS
Google Scholar
Glowacki, J., and S. Mizuno. Collagen scaffolds for tissue engineering. Biopolymers 89:338–344, 2008.
CAS
PubMed
Article
Google Scholar
Goldring, M. B., and K. B. Marcu. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 11:19, 2009.
Article
CAS
Google Scholar
Goldring, M. B., M. Otero, D. A. Plumb, C. Dragomir, M. Favero, K. El Hachem, K. Hashimoto, H. I. Roach, E. Olivotto, R. M. Borzi, and K. B. Marcu. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur. Cell Mater. 21:202–220, 2011.
CAS
PubMed
PubMed Central
Google Scholar
Gooding, C. R., W. Bartlett, G. Bentley, J. A. Skinner, R. Carrington, and A. Flanagan. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13:203–210, 2006.
CAS
PubMed
Article
Google Scholar
Grad, S., D. Eglin, M. Alini, and M. J. Stoddart. Physical stimulation of chondrogenic cells in vitro: a review. Clin. Orthop. Relat. Res. 469:2764–2772, 2011.
PubMed
PubMed Central
Article
Google Scholar
Han, B., J. Li, Z. Li, L. Guo, S. Wang, P. Liu, and Y. Wu. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion. PLoS One 8:e81781, 2013.
PubMed
PubMed Central
Article
CAS
Google Scholar
Hansen, O. M., C. B. Foldager, B. B. Christensen, H. Everland, and M. Lind. Increased chondrocyte seeding density has no positive effect on cartilage repair in an MPEG-PLGA scaffold. Knee Surg. Sports Traumatol. Arthrosc. 21:485–493, 2013.
PubMed
Article
Google Scholar
Hao, H., G. Chen, J. Liu, D. Ti, Y. Zhao, S. Xu, X. Fu, and W. Han. Culturing on Wharton’s jelly extract delays mesenchymal stem cell senescence through p53 and p16INK4a/pRb pathways. Plos One 8:13, 2013.
Google Scholar
Heath, C. A., and S. R. Magari. Mini-review: mechanical factors affecting cartilage regeneration in vitro. Biotechnol. Bioeng. 50:430–437, 1996.
CAS
PubMed
Article
Google Scholar
Hildner, F., S. Concaro, A. Peterbauer, S. Wolbank, M. Danzer, A. Lindahl, P. Gatenholm, H. Redl, and M. van Griensven. Human adipose-derived stem cells contribute to chondrogenesis in coculture with human articular chondrocytes. Tissue Eng. Part A 15:3961–3969, 2009.
CAS
PubMed
Article
Google Scholar
Hilkens, P., P. Gervois, Y. Fanton, J. Vanormelingen, W. Martens, T. Struys, C. Politis, I. Lambrichts, and A. Bronckaers. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res. 353:65–78, 2013.
CAS
PubMed
Article
Google Scholar
Hubka, K. M., R. L. Dahlin, V. V. Meretoja, F. K. Kasper, and A. G. Mikos. Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Tissue Eng. Part B Rev. 20:641–654, 2014.
PubMed
PubMed Central
Article
Google Scholar
Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 10:432–463, 2002.
CAS
PubMed
Article
Google Scholar
Hwang, N. S., and J. Elisseeff. Application of stem cells for articular cartilage regeneration. J. Knee Surg. 22:60–71, 2009.
PubMed
Article
Google Scholar
Hwang, N. S., S. G. Im, P. B. Wu, D. A. Bichara, X. Zhao, M. A. Randolph, R. Langer, and D. G. Anderson. Chondrogenic priming adipose-mesenchymal stem cells for cartilage tissue regeneration. Pharm. Res. 28:1395–1405, 2011.
CAS
PubMed
Article
Google Scholar
Hwang, N. S., S. Varghese, C. Puleo, Z. Zhang, and J. Elisseeff. Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. J. Cell Physiol. 212:281–284, 2007.
CAS
PubMed
Article
Google Scholar
Ikenoue, T., M. C. Trindade, M. S. Lee, E. Y. Lin, D. J. Schurman, S. B. Goodman, and R. L. Smith. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J. Orthop. Res. 21:110–116, 2003.
CAS
PubMed
Article
Google Scholar
Im, G. I., Y. W. Shin, and K. B. Lee. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr. Cartil. 13:845–853, 2005.
PubMed
Article
Google Scholar
In ‘t Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, G. M. de Groot-Swings, F. H. Claas, W. E. Fibbe, and H. H. Kanhai. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345, 2004.
PubMed
Article
Google Scholar
Inada, M., Y. Wang, M. H. Byrne, M. U. Rahman, C. Miyaura, C. Lopez-Otin, and S. M. Krane. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc. Natl. Acad. Sci. USA 101:17192–17197, 2004.
CAS
PubMed
PubMed Central
Article
Google Scholar
Iwata, H., S. Ono, K. Sato, T. Sato, and M. Kawamura. Bone morphogenetic protein-induced muscle- and synovium-derived cartilage differentiation in vitro. Clin. Orthop. Relat. Res. 296:295–300, 1993.
PubMed
Google Scholar
Izadpanah, R., C. Trygg, B. Patel, C. Kriedt, J. Dufour, J. M. Gimble, and B. A. Bunnell. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J. Cell Biochem. 99:1285–1297, 2006.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, and I. Martin. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell Biochem. 81:368–377, 2001.
CAS
PubMed
Article
Google Scholar
Jakob, M., O. Demarteau, D. Schafer, M. Stumm, M. Heberer, and I. Martin. Enzymatic digestion of adult human articular cartilage yields a small fraction of the total available cells. Connect. Tissue Res. 44:173–180, 2003.
CAS
PubMed
Article
Google Scholar
Johnson, T. S., J. W. Xu, V. V. Zaporojan, J. M. Mesa, C. Weinand, M. A. Randolph, L. J. Bonassar, J. M. Winograd, and M. J. Yaremchuk. Integrative repair of cartilage with articular and nonarticular chondrocytes. Tissue Eng. 10:1308–1315, 2004.
CAS
PubMed
Article
Google Scholar
Johnson, K., S. T. Zhu, M. S. Tremblay, J. N. Payette, J. N. Wang, L. C. Bouchez, S. Meeusen, A. Althage, C. Y. Cho, X. Wu, and P. G. Schultz. A stem cell-based approach to cartilage repair. Science 336:717–721, 2012.
CAS
PubMed
Article
Google Scholar
Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272, 1998.
CAS
PubMed
Article
Google Scholar
Jonitz, A., K. Lochner, T. Tischer, D. Hansmann, and R. Bader. TGF-beta1 and IGF-1 influence the re-differentiation capacity of human chondrocytes in 3D pellet cultures in relation to different oxygen concentrations. Int. J. Mol. Med. 30:666–672, 2012.
CAS
PubMed
Google Scholar
Kafienah, W., M. Jakob, O. Demarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8:817–826, 2002.
CAS
PubMed
Article
Google Scholar
Kane, P., R. Frederick, B. Tucker, C. C. Dodson, J. A. Anderson, M. G. Ciccotti, and K. B. Freedman. Surgical restoration/repair of articular cartilage injuries in athletes. Phys. Sportsmed. 41:75–86, 2013.
PubMed
Article
Google Scholar
Keller, B., T. Yang, Y. Chen, E. Munivez, T. Bertin, B. Zabel, and B. Lee. Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PLoS One 6:0016421, 2011.
Article
CAS
Google Scholar
Kern, S., H. Eichler, J. Stoeve, H. Kluter, and K. Bieback. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301, 2006.
CAS
PubMed
Article
Google Scholar
Kim, Y. J., H. J. Kim, and G. I. Im. PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochem. Biophys. Res. Commun. 373:104–108, 2008.
CAS
PubMed
Article
Google Scholar
Kim, J. S., Z. Y. Ryoo, and J. S. Chun. Cytokine-like 1 (Cytl1) regulates the chondrogenesis of mesenchymal cells. J. Biol. Chem. 282:29359–29367, 2007.
CAS
PubMed
Article
Google Scholar
Kino-Oka, M., S. Yashiki, Y. Ota, Y. Mushiaki, K. Sugawara, T. Yamamoto, T. Takezawa, and M. Taya. Subculture of chondrocytes on a collagen type I-coated substrate with suppressed cellular dedifferentiation. Tissue Eng. 11:597–608, 2005.
CAS
PubMed
Article
Google Scholar
Knauper, V., S. Cowell, B. Smith, C. Lopez-Otin, M. O’Shea, H. Morris, L. Zardi, and G. Murphy. The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem. 272:7608–7616, 1997.
CAS
PubMed
Article
Google Scholar
Knutsen, G., J. O. Drogset, L. Engebretsen, T. Grontvedt, V. Isaksen, T. C. Ludvigsen, S. Roberts, E. Solheim, T. Strand, and O. Johansen. A Randomized trial comparing autologous chondrocyte implantation with microfracture. J. Bone Joint Surg. Am. 89A:2105–2112, 2007.
Article
Google Scholar
Komarek, J., P. Valis, M. Repko, R. Chaloupka, and M. Krbec. Treatment of deep cartilage defects of the knee with autologous chondrocyte transplantation: long-term results. Acta Chir. Orthop. Traumatol. Cech. 77:291–295, 2010.
CAS
PubMed
Google Scholar
Kon, E., A. Roffi, G. Filardo, G. Tesei, and M. Marcacci. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31:767–775, 2015.
PubMed
Article
Google Scholar
Kurtz, S., K. Ong, E. Lau, F. Mowat, and M. Halpern. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 89:780–785, 2007.
PubMed
Article
Google Scholar
Lee, J. S., and G. I. Im. Influence of chondrocytes on the chondrogenic differentiation of adipose stem cells. Tissue Eng. Part A 16:3569–3577, 2010.
CAS
PubMed
Article
Google Scholar
Lee, R. H., B. Kim, I. Choi, H. Kim, H. S. Choi, K. Suh, Y. C. Bae, and J. S. Jung. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell. Physiol. Biochem. 14:311–324, 2004.
CAS
PubMed
Article
Google Scholar
Leyh, M., A. Seitz, L. Durselen, J. Schaumburger, A. Ignatius, J. Grifka, and S. Grassel. Subchondral bone influences chondrogenic differentiation and collagen production of human bone marrow-derived mesenchymal stem cells and articular chondrocytes. Arthritis Res. Ther. 16:453, 2014.
PubMed
PubMed Central
Article
CAS
Google Scholar
Leyh, M., A. Seitz, L. Dürselen, H. R. Springorum, P. Angele, A. Ignatius, J. Grifka, and S. Grässel. Osteoarthritic cartilage explants affect extracellular matrix production and composition in cocultured bone marrow-derived mesenchymal stem cells and articular chondrocytes. Stem Cell Res. Ther. 5:77, 2014.
PubMed
PubMed Central
Article
CAS
Google Scholar
Li, Z., C. Liu, Z. Xie, P. Song, R. C. Zhao, L. Guo, Z. Liu, and Y. Wu. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6:9, 2011.
Google Scholar
Lopa, S., A. Colombini, V. Sansone, F. W. Preis, and M. Moretti. Influence on chondrogenesis of human osteoarthritic chondrocytes in co-culture with donor-matched mesenchymal stem cells from infrapatellar fat pad and subcutaneous adipose tissue. Int. J. Immunopathol. Pharmacol. 26:23–31, 2013.
CAS
PubMed
Google Scholar
Lutolf, M. P., and J. A. Hubbell. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23:47–55, 2005.
CAS
PubMed
Article
Google Scholar
Ma, B., J. C. Leijten, L. Wu, M. Kip, C. A. van Blitterswijk, J. N. Post, and M. Karperien. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr. Cartil. 21:599–603, 2013.
CAS
PubMed
Article
Google Scholar
Mahmoudifar, N., and P. M. Doran. Effect of seeding and bioreactor culture conditions on the development of human tissue-engineered cartilage. Tissue Eng. 12:1675–1685, 2006.
CAS
PubMed
Article
Google Scholar
Makris, E. A., A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11:21–34, 2015.
CAS
PubMed
PubMed Central
Article
Google Scholar
Manferdini, C., M. Maumus, E. Gabusi, A. Piacentini, G. Filardo, J. A. Peyrafitte, C. Jorgensen, P. Bourin, S. Fleury-Cappellesso, A. Facchini, D. Noel, and G. Lisignoli. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 65:1271–1281, 2013.
CAS
PubMed
Article
Google Scholar
Marcacci, M., S. Zaffagnini, E. Kon, A. Visani, F. Iacono, and I. Loreti. Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg. Sports Traumatol. Arthrosc. 10:154–159, 2002.
CAS
PubMed
Article
Google Scholar
Maumus, M., C. Manferdini, K. Toupet, J. A. Peyrafitte, R. Ferreira, A. Facchini, E. Gabusi, P. Bourin, C. Jorgensen, G. Lisignoli, and D. Noel. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res. 11:834–844, 2013.
CAS
PubMed
Article
Google Scholar
Mayan, M. D., P. Carpintero-Fernandez, R. Gago-Fuentes, O. Martinez-de-Ilarduya, H. Z. Wang, V. Valiunas, P. Brink, and F. J. Blanco. Human articular chondrocytes express multiple gap junction proteins: differential expression of connexins in normal and osteoarthritic cartilage. Am. J. Pathol. 12:018, 2013.
Google Scholar
Mehlhorn, A. T., P. Niemeyer, S. Kaiser, G. Finkenzeller, G. B. Stark, N. P. Sudkamp, and H. Schmal. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Eng. 12:2853–2862, 2006.
CAS
PubMed
Article
Google Scholar
Mesallati, T., E. J. Sheehy, T. Vinardell, C. T. Buckley, and D. J. Kelly. Tissue engineering scaled-up, anatomically shaped osteochondral constructs for joint resurfacing. Eur. Cell Mater. 30:163–185, 2015; (discussion 185–166).
CAS
PubMed
Google Scholar
Micheli, L. J., J. E. Browne, C. Erggelet, F. Fu, B. Mandelbaum, J. B. Moseley, and D. Zurakowski. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin. J. Sport Med. 11:223–228, 2001.
CAS
PubMed
Article
Google Scholar
Miller, M. J., S. Ahmed, P. Bobrowski, and T. M. Haqqi. The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1beta. BMC Complement Altern. Med. 6:13, 2006.
PubMed
PubMed Central
Article
Google Scholar
Minas, T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin. Orthop. Relat. Res. 391:S349–S361, 2001.
PubMed
Article
Google Scholar
Mo, X.-T., S.-C. Guo, H.-Q. Xie, L. Deng, W. Zhi, Z. Xiang, X.-Q. Li, and Z.-M. Yang. Variations in the ratios of co-cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 45:42–51, 2009.
PubMed
Article
Google Scholar
Moriguchi, Y., K. Tateishi, W. Ando, K. Shimomura, Y. Yonetani, Y. Tanaka, K. Kita, D. A. Hart, A. Gobbi, K. Shino, H. Yoshikawa, and N. Nakamura. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials 34:2185–2193, 2013.
CAS
PubMed
Article
Google Scholar
Munir, S., C. B. Foldager, M. Lind, V. Zachar, K. Soballe, and T. G. Koch. Hypoxia enhances chondrogenic differentiation of human adipose tissue-derived stromal cells in scaffold-free and scaffold systems. Cell Tissue Res. 1:1, 2013.
Google Scholar
Murphy, L., T. A. Schwartz, C. G. Helmick, J. B. Renner, G. Tudor, G. Koch, A. Dragomir, W. D. Kalsbeek, G. Luta, and J. M. Jordan. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59:1207–1213, 2008.
PubMed
PubMed Central
Article
Google Scholar
Musgrave, D. S., R. Pruchnic, V. Wright, P. Bosch, S. C. Ghivizzani, P. D. Robbins, and J. Huard. The effect of bone morphogenetic protein-2 expression on the early fate of skeletal muscle-derived cells. Bone 28:499–506, 2001.
CAS
PubMed
Article
Google Scholar
Mwale, F., G. Yao, J. A. Ouellet, A. Petit, and J. Antoniou. Effect of parathyroid hormone on type X and type II collagen expression in mesenchymal stem cells from osteoarthritic patients. Tissue Eng. Part A 16:3449–3455, 2010.
CAS
PubMed
Article
Google Scholar
Nejadnik, H., J. H. Hui, E. P. Feng Choong, B. C. Tal, and E. H. Lee. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am. J. Sports Med. 38:1110–1116, 2010.
PubMed
Article
Google Scholar
Nevo, Z., A. Beit-Or, and Y. Eilam. Slowing down aging of cultured embryonal chick chondrocytes by maintenance under lowered oxygen tension. Mech. Ageing Dev. 45:157–165, 1988.
CAS
PubMed
Article
Google Scholar
Ng, L., A. J. Grodzinsky, P. Patwari, J. Sandy, A. Plaas, and C. Ortiz. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143:242–257, 2003.
CAS
PubMed
Article
Google Scholar
Noer, A., L. C. Lindeman, and P. Collas. Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells Dev. 18:725–736, 2009.
CAS
PubMed
Article
Google Scholar
O’Driscoll, S. W. Preclinical cartilage repair: current status and future perspectives. Clin. Orthop. Relat. Res. 391:S397–S401, 2001.
PubMed
Article
Google Scholar
Pelttari, K., B. Pippenger, M. Mumme, S. Feliciano, C. Scotti, P. Mainil-Varlet, A. Procino, B. von Rechenberg, T. Schwamborn, M. Jakob, C. Cillo, A. Barbero, and I. Martin. Adult human neural crest-derived cells for articular cartilage repair. Sci. Transl. Med. 6:251ra119, 2014.
PubMed
Article
CAS
Google Scholar
Pelttari, K., A. Winter, E. Steck, K. Goetzke, T. Hennig, B. G. Ochs, T. Aigner, and W. Richter. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 54:3254–3266, 2006.
CAS
PubMed
Article
Google Scholar
Peterson, L., M. Brittberg, I. Kiviranta, E. L. Akerlund, and A. Lindahl. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am. J. Sports Med. 30:2–12, 2002.
PubMed
Google Scholar
Peterson, L., T. Minas, M. Brittberg, and A. Lindahl. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J. Bone Joint Surg. Am. 2:17–24, 2003.
Google Scholar
Pfeiffer, E., S. M. Vickers, E. Frank, A. J. Grodzinsky, and M. Spector. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Osteoarthr. Cartil. 16:1237–1244, 2008.
CAS
PubMed
Article
Google Scholar
Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.
CAS
PubMed
Article
Google Scholar
Poole, A. R., T. Kojima, T. Yasuda, F. Mwale, M. Kobayashi, and S. Laverty. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 391:S26–S33, 2001.
PubMed
Article
Google Scholar
Redman, S. N., S. F. Oldfield, and C. W. Archer. Current strategies for articular cartilage repair. Eur. Cell Mater. 9:23–32, 2005.
CAS
PubMed
Google Scholar
Richardson, S. M., R. V. Walker, S. Parker, N. P. Rhodes, J. A. Hunt, A. J. Freemont, and J. A. Hoyland. Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24:707–716, 2006.
CAS
PubMed
Article
Google Scholar
Rider, D. A., C. Dombrowski, A. A. Sawyer, G. H. Ng, D. Leong, D. W. Hutmacher, V. Nurcombe, and S. M. Cool. Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells 26:1598–1608, 2008.
CAS
PubMed
Article
Google Scholar
Ronziere, M. C., E. Perrier, F. Mallein-Gerin, and A. M. Freyria. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomed. Mater. Eng. 20:145–158, 2010.
CAS
PubMed
Google Scholar
Rotter, N., L. J. Bonassar, G. Tobias, M. Lebl, A. K. Roy, and C. A. Vacanti. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23:3087–3094, 2002.
CAS
PubMed
Article
Google Scholar
Russlies, M., P. Behrens, E. M. Ehlers, C. Brohl, C. Vindigni, M. Spector, and B. Kurz. Periosteum stimulates subchondral bone densification in autologous chondrocyte transplantation in a sheep model. Cell Tissue Res. 319:133–142, 2005.
PubMed
Article
Google Scholar
Schroer, W. C., K. R. Berend, A. V. Lombardi, C. L. Barnes, M. P. Bolognesi, M. E. Berend, M. A. Ritter, and R. M. Nunley. Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J. Arthroplast. 28:116–119, 2013.
Article
Google Scholar
Scotti, C., A. Osmokrovic, F. Wolf, S. Miot, G. M. Peretti, A. Barbero, and I. Martin. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1beta and low oxygen. Tissue Eng. Part A 18:362–372, 2012.
CAS
PubMed
PubMed Central
Article
Google Scholar
Seror, J., Y. Merkher, N. Kampf, L. Collinson, A. J. Day, A. Maroudas, and J. Klein. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan–aggrecan complexes. Biomacromolecules 12:3432–3443, 2011.
CAS
PubMed
Article
Google Scholar
Shakibaei, M., P. De Souza, and H. J. Merker. Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol. Int. 21:115–125, 1997.
CAS
PubMed
Article
Google Scholar
Shapiro, F., S. Koide, and M. J. Glimcher. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 75:532–553, 1993.
CAS
PubMed
Google Scholar
Shen, Y., Y. Fu, J. Wang, G. Li, X. Zhang, Y. Xu, and Y. Lin. Biomaterial and mesenchymal stem cell for articular cartilage reconstruction. Curr. Stem Cell Res. Ther. 9:254–267, 2014.
CAS
PubMed
Article
Google Scholar
Shintani, N., and E. B. Hunziker. Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: influence of microenvironment, tissue origin and growth factor. Eur. Cell Mater. 22:302–319, 2011.
CAS
PubMed
Google Scholar
Shipley, R. J., and S. L. Waters. Fluid and mass transport modelling to drive the design of cell-packed hollow fibre bioreactors for tissue engineering applications. Math. Med. Biol. 29:329–359, 2012.
PubMed
Article
Google Scholar
Singh, S., C. C. Lee, and B. K. Tay. Results of arthroscopic abrasion arthroplasty in osteoarthritis of the knee joint. Singap. Med. J. 32:34–37, 1991.
CAS
Google Scholar
Sledge, S. L. Microfracture techniques in the treatment of osteochondral injuries. Clin. Sports Med. 20:365–377, 2001.
CAS
PubMed
Article
Google Scholar
Slynarski, K., W. Widuchowski, M. Snow, W. Weiss, J. Kruczynski, J. Hendriks, J. Guidoux, and P. Verdonk. Primary chondrocytes and bone marrow cells on a 3D co-polymer scaffold: 2-year results of a prospective, multicenter, single-arm clinical trial in patients with cartilage defects of the knee. Revue de Chirurgie Orthopédique et Traumatologique 101:e17–e18, 2015.
Article
Google Scholar
Solorio, L. D., E. L. Vieregge, C. D. Dhami, and E. Alsberg. High-density cell systems incorporating polymer microspheres as microenvironmental regulators in engineered cartilage tissues. Tissue Eng. Part B Rev. 19:209–220, 2013.
CAS
PubMed
PubMed Central
Article
Google Scholar
Stickens, D., D. J. Behonick, N. Ortega, B. Heyer, B. Hartenstein, Y. Yu, A. J. Fosang, M. Schorpp-Kistner, P. Angel, and Z. Werb. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131:5883–5895, 2004.
CAS
PubMed
PubMed Central
Article
Google Scholar
Stockwell, R. A. The cell density of human articular and costal cartilage. J. Anat. 101:753–763, 1967.
CAS
PubMed
PubMed Central
Google Scholar
Tan, J., H. Huang, W. Huang, L. Li, J. Guo, B. Huang, and J. Lu. The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells. J. Genet. Genom. 35:585–593, 2008.
CAS
Article
Google Scholar
Taylor, D. W., N. Ahmed, L. Gan, A. E. Gross, and R. A. Kandel. Proteoglycan and collagen accumulation by passaged chondrocytes can be enhanced through side-by-side culture with primary chondrocytes. Tissue Eng. Part A 16:643–651, 2010.
CAS
PubMed
Article
Google Scholar
Thorpe, S. D., T. Nagel, S. F. Carroll, and D. J. Kelly. Modulating gradients in regulatory signals within mesenchymal stem cell seeded hydrogels: a novel strategy to engineer zonal articular cartilage. PLoS One 8:e60764, 2013.
CAS
PubMed
PubMed Central
Article
Google Scholar
Toyoda, T., B. B. Seedhom, J. Q. Yao, J. Kirkham, S. Brookes, and W. A. Bonass. Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum. 48:2865–2872, 2003.
CAS
PubMed
Article
Google Scholar
Tsuchiya, K., G. Chen, T. Ushida, T. Matsuno, and T. Tateishi. The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Mater. Sci. Eng. C 24:391–396, 2004.
Article
CAS
Google Scholar
Tuli, R., W. J. Li, and R. S. Tuan. Current state of cartilage tissue engineering. Arthritis Research & Therapy 5:235–238, 2003.
CAS
Article
Google Scholar
Ulrich-Vinther, M., M. D. Maloney, E. M. Schwarz, R. Rosier, and R. J. O’Keefe. Articular cartilage biology. J. Am. Acad. Orthop. Surg. 11:421–430, 2003.
PubMed
Article
Google Scholar
Vavken, P., F. Arrich, M. Pilz, and R. Dorotka. An in vitro model of biomaterial-augmented microfracture including chondrocyte-progenitor cell interaction. Arch. Orthop. Trauma Surg. 130:711–716, 2010.
PubMed
Article
Google Scholar
Villiger, P. M., and M. Lotz. Differential expression of TGF beta isoforms by human articular chondrocytes in response to growth factors. J. Cell Physiol. 151:318–325, 1992.
CAS
PubMed
Article
Google Scholar
Viste, A., M. Piperno, R. Desmarchelier, S. Grosclaude, B. Moyen, and M. H. Fessy. Autologous chondrocyte implantation for traumatic full-thickness cartilage defects of the knee in 14 patients: 6-year functional outcomes. Orthop. Traumatol. Surg. Res. 98:737–743, 2012.
CAS
PubMed
Article
Google Scholar
von der Mark, K., V. Gauss, H. von der Mark, and P. Muller. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532, 1977.
PubMed
Article
Google Scholar
Vunjak-Novakovic, G., L. E. Freed, R. J. Biron, and R. Langer. Effects of mixing on the composition and morphology of tissue-engineered cartilage. AIChE J. 42:850–860, 1996.
CAS
Article
Google Scholar
Wakitani, S., K. Imoto, T. Yamamoto, M. Saito, N. Murata, and M. Yoneda. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr. Cartil. 10:199–206, 2002.
CAS
PubMed
Article
Google Scholar
Wakitani, S., T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura, and S. Horibe. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transpl. 13:595–600, 2004.
Article
Google Scholar
Wakitani, S., M. Nawata, K. Tensho, T. Okabe, H. Machida, and H. Ohgushi. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J. Tissue Eng. Regen. Med. 1:74–79, 2007.
PubMed
Article
Google Scholar
Wakitani, S., T. Okabe, S. Horibe, T. Mitsuoka, M. Saito, T. Koyama, M. Nawata, K. Tensho, H. Kato, K. Uematsu, R. Kuroda, M. Kurosaka, S. Yoshiya, K. Hattori, and H. Ohgushi. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J. Tissue Eng. Regen. Med. 5:146–150, 2011.
PubMed
Article
Google Scholar
Wang, T. Y., and J. H. Wu. A continuous perfusion bioreactor for long-term bone marrow culture. Ann. N. Y. Acad. Sci. 665:274–284, 1992.
CAS
PubMed
Article
Google Scholar
Watt, F. M. Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J. Cell Sci. 89(Pt 3):373–378, 1988.
PubMed
Google Scholar
Weiss, S., T. Hennig, R. Bock, E. Steck, and W. Richter. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J. Cell Physiol. 223:84–93, 2010.
CAS
PubMed
Google Scholar
Wescoe, K. E., R. C. Schugar, C. R. Chu, and B. M. Deasy. The role of the biochemical and biophysical environment in chondrogenic stem cell differentiation assays and cartilage tissue engineering. Cell Biochem. Biophys. 52:85–102, 2008.
CAS
PubMed
Article
Google Scholar
Winter, A., S. Breit, D. Parsch, K. Benz, E. Steck, H. Hauner, R. M. Weber, V. Ewerbeck, and W. Richter. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 48:418–429, 2003.
CAS
PubMed
Article
Google Scholar
Wu, L., H. J. Prins, M. N. Helder, C. A. van Blitterswijk, and M. Karperien. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng. Part A 18:1542–1551, 2012.
CAS
PubMed
Article
Google Scholar
Yang, Y. H., A. J. Lee, and G. A. Barabino. Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem Cells Transl. Med. 1:843–854, 2012.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yonenaga, K., S. Nishizawa, Y. Fujihara, Y. Asawa, K. Sanshiro, S. Nagata, T. Takato, and K. Hoshi. The optimal conditions of chondrocyte isolation and its seeding in the preparation for cartilage tissue engineering. Tissue Eng. Part C Methods 16:1461–1469, 2010.
CAS
PubMed
Article
Google Scholar
Zaslav, K., B. Cole, R. Brewster, T. DeBerardino, J. Farr, P. Fowler, and C. Nissen. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am. J. Sports Med. 37:42–55, 2009.
PubMed
Article
Google Scholar
Zeifang, F., D. Oberle, C. Nierhoff, W. Richter, B. Moradi, and H. Schmitt. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am. J. Sports Med. 38:924–933, 2010.
PubMed
Article
Google Scholar
Zhang, Y., L. Cao, C. Kiani, B. L. Yang, W. Hu, and B. B. Yang. Promotion of chondrocyte proliferation by versican mediated by G1 domain and EGF-like motifs. J. Cell Biochem. 73:445–457, 1999.
CAS
PubMed
Article
Google Scholar
Zhang, L. M., P. Q. Su, C. X. Xu, J. L. Yang, W. H. Yu, and D. S. Huang. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 32:1339–1346, 2010.
CAS
PubMed
Article
Google Scholar
Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228, 2001.
CAS
PubMed
Article
Google Scholar
Zuo, Q., W. Cui, F. Liu, Q. Wang, Z. Chen, and W. Fan. Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes. Int. Orthop. 37:747–752, 2013.
PubMed
PubMed Central
Article
Google Scholar