Annals of Biomedical Engineering

, Volume 44, Issue 6, pp 1863–1880 | Cite as

Chondroinductive Hydrogel Pastes Composed of Naturally Derived Devitalized Cartilage

  • Emily C. Beck
  • Marilyn Barragan
  • Madeleine H. Tadros
  • Emi A. Kiyotake
  • Francisca M. Acosta
  • Sarah L. Kieweg
  • Michael S. Detamore
Emerging Trends in Biomaterials Research

Abstract

Hydrogel precursors are liquid solutions that are prone to leaking from the defect site once implanted in vivo. Therefore, the objective of the current study was to create a hydrogel precursor that exhibited a yield stress. Additionally, devitalized cartilage extracellular matrix (DVC) was mixed with DVC that had been solubilized and methacrylated (MeSDVC) to create hydrogels that were chondroinductive. Precursors composed of 10% MeSDVC or 10% MeSDVC with 10% DVC were first evaluated rheologically, where non-Newtonian behavior was observed in all hydrogel precursors. Rat bone marrow stem cells (rBMSCs) were mixed in the precursor solutions, and the solutions were then crosslinked and cultured in vitro for 6 weeks with and without exposure to human transforming growth factor β3 (TGF-β3). The compressive modulus, gene expression, biochemical content, swelling, and histology of the gels were analyzed. The DVC-containing gels consistently outperformed the MeSDVC-only group in chondrogenic gene expression, especially at 6 weeks, where the relative collagen II expression of the DVC-containing groups with and without TGF-β3 exposure was 40- and 78-fold higher, respectively, than that of MeSDVC alone. Future work will test for chondrogenesis in vivo and overall, these two cartilage-derived components are promising materials for cartilage tissue engineering applications.

Keywords

Devitalized cartilage Hydrogel Yield stress Chondroinduction 

Supplementary material

10439_2015_1547_MOESM1_ESM.tif (604 kb)
Supplementary material 1 (TIFF 603 kb)

References

  1. 1.
    Adkisson, H. D., J. A. Martin, R. L. Amendola, C. Milliman, K. A. Mauch, A. B. Katwal, M. Seyedin, A. Amendola, P. R. Streeter, and J. A. Buckwalter. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am. J. Sports Med. 38:1324–1333, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Armstrong, C., and V. Mow. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. 64:88–94, 1982.PubMedGoogle Scholar
  3. 3.
    Beck, E. C., B. L. Lohman, D. B. Tabakh, S. L. Kieweg, S. H. Gehrke, C. J. Berkland, and M. S. Detamore. Enabling surgical placement of hydrogels through achieving paste-like rheological behavior in hydrogel precursor solutions. Ann. Biomed. Eng. 7:1–8, 2015.Google Scholar
  4. 4.
    Benders, K., P. van Weeren, S. Badylak, D. Saris, W. Dhert, and J. Malda. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 31:169–176, 2013.CrossRefPubMedGoogle Scholar
  5. 5.
    Brigham, M., A. Bick, E. Lo, A. Bendali, J. Burdick, and A. Khademhosseini. Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng. A 15:1645–1653, 2009.CrossRefGoogle Scholar
  6. 6.
    Burdick, J. A., R. L. Mauck, J. H. Gorman, 3rd, and R. C. Gorman. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci. Transl. Med. 5:176ps4, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cha, M., S. Do, G. Park, P. Du, K.-C. Han, D. Han, and K. Park. Induction of re-differentiation of passaged rat chondrocytes using a naturally obtained extracellular matrix microenvironment. Tissue Eng. A 19:978–988, 2013.CrossRefGoogle Scholar
  8. 8.
    Cheng, N.-C., B. T. Estes, H. A. Awad, and F. Guilak. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng. A 15:231–241, 2008.CrossRefGoogle Scholar
  9. 9.
    Cheng, N.-C., B. T. Estes, T.-H. Young, and F. Guilak. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regen. Med. 6:81–93, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheng, N.-C., B. Estes, T.-H. Young, and F. Guilak. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng. A 19:484–496, 2013.CrossRefGoogle Scholar
  11. 11.
    Chun, S. Y., G. J. Lim, T. G. Kwon, E. K. Kwak, B. W. Kim, A. Atala, and J. J. Yoo. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28:4251–4256, 2007.CrossRefPubMedGoogle Scholar
  12. 12.
    Decaris, M., B. Binder, M. Soicher, A. Bhat, and J. Leach. Cell-derived matrix coatings for polymeric scaffolds. Tissue Eng. A 18:2148–2157, 2012.CrossRefGoogle Scholar
  13. 13.
    DeKosky, B., N. Dormer, G. Ingavle, C. Roatch, J. Lomakin, M. Detamore, and S. Gehrke. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. C 16:1533–1542, 2010.CrossRefGoogle Scholar
  14. 14.
    Dennis, S., M. Detamore, S. Kieweg, and C. Berkland. Mapping glycosaminoglycan-hydroxyapatite colloidal gels as potential tissue defect fillers. Langmuir 30:3528–3537, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Elder, A., N. Dangelo, S. Kim, and N. Washburn. Conjugation of β-sheet peptides to modify the rheological properties of hyaluronic acid. Biomacromolecules 12:2610–2616, 2011.CrossRefPubMedGoogle Scholar
  16. 16.
    Elisseeff, J., C. Puleo, F. Yang, and B. Sharma. Advances in skeletal tissue engineering with hydrogels. Orthod. Craniofac. Res. 8:150–161, 2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Freytes, D. O., J. Martin, S. S. Velankar, A. S. Lee, and S. F. Badylak. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29:1630–1637, 2008.CrossRefPubMedGoogle Scholar
  18. 18.
    Garrigues, N. W., D. Little, J. Sanchez-Adams, D. S. Ruch, and F. Guilak. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J. Biomed. Mater. Res. A 102:3998–4008, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gershlak, J. R., J. I. Resnikoff, K. E. Sullivan, C. Williams, R. M. Wang, and L. D. Black. Mesenchymal stem cells ability to generate traction stress in response to substrate stiffness is modulated by the changing extracellular matrix composition of the heart during development. Biochem. Biophys. Res. Commun. 439:161–166, 2013.CrossRefPubMedGoogle Scholar
  20. 20.
    Huang, C.-Y., A. Stankiewicz, G. A. Ateshian, and V. C. Mow. Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38:799–809, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kanematsu, A., S. Yamamoto, M. Ozeki, T. Noguchi, I. Kanatani, O. Ogawa, and Y. Tabata. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25:4513–4520, 2004.CrossRefPubMedGoogle Scholar
  22. 22.
    Keane, T. J., I. T. Swinehart, and S. F. Badylak. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84:25–34, 2015.CrossRefPubMedGoogle Scholar
  23. 23.
    Khanlari, A., M. S. Detamore, and S. H. Gehrke. Increasing cross-linking efficiency of methacrylated chondroitin sulfate hydrogels by copolymerization with oligo (ethylene glycol) diacrylates. Macromolecules 46:9609–9617, 2013.CrossRefGoogle Scholar
  24. 24.
    Kwon, J. S., S. M. Yoon, S. W. Shim, J. H. Park, K. J. Min, H. J. Oh, J. H. Kim, Y. J. Kim, J. J. Yoon, and B. H. Choi. Injectable extracellular matrix hydrogel developed using porcine articular cartilage. Int. J. Pharm. 454:183–191, 2013.CrossRefPubMedGoogle Scholar
  25. 25.
    Levorson, E., O. Hu, P. Mountziaris, F. Kasper, and A. Mikos. Cell-derived polymer/extracellular matrix composite scaffolds for cartilage regeneration, Part 2: Construct devitalization and determination of chondroinductive capacity. Tissue Eng. C 20:358–372, 2014.CrossRefGoogle Scholar
  26. 26.
    Liu, Y., Y. Zhang, P. Dong, R. An, C. Xue, Y. Ge, L. Wei, and X. Liang. Digestion of nucleic acids starts in the stomach. Sci. Rep. 5:11936, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408, 2001.CrossRefPubMedGoogle Scholar
  28. 28.
    Lu, H., M. Charati, I. Kim, and J. Burdick. Injectable shear-thinning hydrogels engineered with a self-assembling Dock-and-Lock mechanism. Biomaterials 33:2145–2153, 2012.CrossRefPubMedGoogle Scholar
  29. 29.
    Mansour, J. M. Biomechanics of cartilage. In: Kinesiology: The Mechanics and Pathomechanics of Human Movement, edited by C. A. Oatis. Baltimore: Lippincott Williams & Wilkins, 2003, pp. 66–79.Google Scholar
  30. 30.
    McLennan, A., A. Bates, P. Turner, and M. White. BIOS Instant Notes in Molecular Biology. New York: Taylor & Francis, 2012.Google Scholar
  31. 31.
    Renth, A. N., and M. S. Detamore. Leveraging “raw materials” as building blocks and bioactive signals in regenerative medicine. Tissue Eng. B 18:341–362, 2012.CrossRefGoogle Scholar
  32. 32.
    Rowland, C., D. Lennon, A. Caplan, and F. Guilak. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials 34:5802–5812, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rughani, R. V., M. C. Branco, D. J. Pochan, and J. P. Schneider. De novo design of a shear-thin recoverable peptide-based hydrogel capable of intrafibrillar photopolymerization. Macromolecules 43:7924–7930, 2010.CrossRefGoogle Scholar
  34. 34.
    Schwarz, S., A. F. Elsaesser, L. Koerber, E. Goldberg-Bockhorn, A. M. Seitz, C. Bermueller, L. Dürselen, A. Ignatius, R. Breiter, and N. Rotter. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J. Tissue Eng. Regen. Med. 2012. doi:10.1002/term.1650.PubMedCentralGoogle Scholar
  35. 35.
    Schwarz, S., L. Koerber, A. F. Elsaesser, E. Goldberg-Bockhorn, A. M. Seitz, L. Durselen, A. Ignatius, P. Walther, R. Breiter, and N. Rotter. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng. A 18:2195–2209, 2012.CrossRefGoogle Scholar
  36. 36.
    Seif-Naraghi, S. B., D. Horn, P. J. Schup-Magoffin, and K. L. Christman. Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater. 8:3695–3703, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Seif-Naraghi, S. B., M. A. Salvatore, P. J. Schup-Magoffin, D. P. Hu, and K. L. Christman. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng. A 16:2017–2027, 2010.CrossRefGoogle Scholar
  38. 38.
    Sutherland, A. J., E. C. Beck, S. C. Dennis, G. L. Converse, R. A. Hopkins, C. J. Berkland, and M. S. Detamore. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering. PLoS One 10:e0121966, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sutherland, A. J., G. L. Converse, R. A. Hopkins, and M. S. Detamore. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv. Healthc. Mater. 4:29–39, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tatman, P. D., W. Gerull, S. Sweeney-Easter, J. I. Davis, D.-H. Kim, and A. Gee. Multi-scale biofabrication of articular cartilage: bioinspired and biomimetic approaches. Tissue Eng. B 21:543–559, 2015.CrossRefGoogle Scholar
  41. 41.
    Todd, R. H., and S. K. Daniel. Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007, 2008.CrossRefGoogle Scholar
  42. 42.
    Villanueva, I., C. A. Weigel, and S. J. Bryant. Cell–matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater. 5:2832–2846, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Visser, J., P. A. Levett, N. C. te Moller, J. Besems, K. W. Boere, M. H. van Rijen, J. C. de Grauw, W. J. Dhert, P. R. van Weeren, and J. Malda. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue. Tissue Eng. A 21:1195–1206, 2015.CrossRefGoogle Scholar
  44. 44.
    Wan, Y. S., S. Wei-Heng, and A. A. Ilhan. Elastic and yield behavior of strongly flocculated colloids. J. Am. Ceram. Soc. 82:616–624, 2004.CrossRefGoogle Scholar
  45. 45.
    Wang, Q., Z. Gu, S. Jamal, M. S. Detamore, and C. Berkland. Hybrid hydroxyapatite nanoparticle colloidal gels are injectable fillers for bone tissue engineering. Tissue Eng. A 19:2586–2593, 2013.CrossRefGoogle Scholar
  46. 46.
    Wang, Q., S. Jamal, M. Detamore, and C. Berkland. PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J. Biomed. Mater. Res. A 96:520–527, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang, Q., L. Wang, M. S. Detamore, and C. Berkland. Biodegradable colloidal gels as moldable tissue engineering scaffolds. Adv. Mater. 20:236–239, 2008.CrossRefGoogle Scholar
  48. 48.
    Wang, Q., J. Wang, Q. Lu, M. Detamore, and C. Berkland. Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects. Biomaterials 31:4980–4986, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yang, Z., Y. Shi, X. Wei, J. He, S. Yang, G. Dickson, J. Tang, J. Xiang, C. Song, and G. Li. Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng. C 16:865–876, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Emily C. Beck
    • 1
  • Marilyn Barragan
    • 2
  • Madeleine H. Tadros
    • 3
  • Emi A. Kiyotake
    • 4
  • Francisca M. Acosta
    • 5
  • Sarah L. Kieweg
    • 4
    • 6
  • Michael S. Detamore
    • 4
    • 5
  1. 1.Department of SurgeryUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Molecular BiosciencesUniversity of KansasLawrenceUSA
  3. 3.Department of Chemical and Biomolecular EngineeringRice UniversityHoustonUSA
  4. 4.Bioengineering ProgramUniversity of KansasLawrenceUSA
  5. 5.Department of Chemical and Petroleum EngineeringUniversity of KansasLawrenceUSA
  6. 6.Department of Mechanical EngineeringUniversity of KansasLawrenceUSA

Personalised recommendations