Skip to main content
Log in

Drug-Eluting Stent Design is a Determinant of Drug Concentration at the Endothelial Cell Surface

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although drug-eluting stents (DES) have greatly reduced arterial restenosis, there are persistent concerns about stent thrombosis. DES thrombosis is attributable to retarded vascular re-endothelialization due to both stent-induced flow disturbance and the inhibition by the eluted drug of endothelial cell proliferation and migration. The present computational study aims to determine the effect of DES design on both stent-induced flow disturbance and the concentration of eluted drug at the arterial luminal surface. To this end, we consider three closed-cell stent designs that resemble certain commercial stents as well as three “idealized” stents that provide insight into the impact of specific characteristics of stent design. To objectively compare the different stents, we introduce the Stent Penalty Index (SPI), a dimensionless quantity whose value increases with both the extent of flow disturbance and luminal drug concentration. Our results show that among the three closed-cell designs studied, wide cell designs lead to lower SPI and are thus expected to have a less adverse effect on vascular re-endothelialization. For the idealized stent designs, a spiral stent provides favorable SPI values, whereas an intertwined ring stent leads to an elevated SPI. The present findings shed light onto the effect of stent design on the concentration of the eluted drug at the arterial luminal surface, an important consideration in the assessment of DES performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Albuquerque, M. C., C. M. Waters, U. Savla, H. W. Schnaper, and A. S. Flozak. Shear stress enhances human endothelial cell wound closure in vitro. Am. J. Physiol. 279:H293–H302, 2000.

    CAS  Google Scholar 

  2. Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1045–1066, 1990.

    Article  CAS  PubMed  Google Scholar 

  3. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008.

    Article  PubMed  Google Scholar 

  4. Barakat, A. I. and Cheng, E. T. Numerical simulation of fluid mechanical disturbance induced by intravascular stents. In: Proceedings of the 11th international conference on mechanical, medicine and biology, pp. 33–36, 2000.

  5. Berry, J. L., A. Santamarina, J. E. Moore, S. Roychowdhury, and W. D. Routh. Experimental and computational evaluation of coronary stent. Ann. Biomed. Eng. 28:386–398, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Bozsak, F., J. Chomaz, and A. I. Barakat. Modeling transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall. Biomech. Model. Mechanobiol. 13:327–347, 2014.

    Article  PubMed  Google Scholar 

  7. Camenzind, E. Treatment of in-stent restenosis—back to the future? N. Engl. J. Med. 355:2149–2151, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Coppola, G., and C. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6:519–528, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, and M. A. Gimbrone. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA 83:2114–2117, 1986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. Vasc. Biol. 12:1254–1257, 1992.

    Article  CAS  Google Scholar 

  11. Duraiswamy, N., J. M. Cesar, R. T. Schoephoerster, and J. E. Moore. Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model. Biorheology 45:547–561, 2008.

    PubMed  Google Scholar 

  12. Duraiswamy, N., R. T. Schoephoerster, and J. E. Moore. Comparison of near-wall hemodynamic parameters in stented artery models. J. Biomech. Eng. 131:061006, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Finn, A. V., G. Nakazawa, M. Joner, F. D. Kolodgie, E. K. Mont, H. K. Gold, and R. Virmani. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler. Thromb. Vasc. Biol. 27:1500–1510, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Gerbeau, J., M. Vidrascu, and P. Frey. Fluid-structure interaction in blood flows on geometries based on medical imaging. Compos. Struct. 83:155–165, 2005.

    Article  Google Scholar 

  15. Gojova, A., and A. I. Barakat. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive channels. J. Appl. Physiol. 98:2355–2362, 2005.

    Article  PubMed  Google Scholar 

  16. Hsu, P. P., S. Li, Y. S. Li, S. Usami, A. Ratcliffe, X. Wang, and S. Chien. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem. Biophys. Res. Commun. 285:751–759, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Jimenez, J. M., and P. F. Davies. Hemodynamically driven stent strut design. Ann. Biomed. Eng. 37:1483–1494, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jin, S., J. Oshinski, and D. P. Giddens. Effects of wall motion and compliance on flow patterns in the ascending aorta. J. Biomech. Eng. 125:347–354, 2005.

    Article  Google Scholar 

  19. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schühlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, and A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.

    Article  CAS  PubMed  Google Scholar 

  20. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schühlen, M. Seyfarth, C. Schmitt, R. Blasini, F. J. Neumann, and A. Schömig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H. J., I. E. Vignon-Clmentel, J. S. Coogan, C. A. Figueroa, J. E. Jansen, and C. A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38:3195–3209, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.

    Article  PubMed  Google Scholar 

  23. Luscher, T. F., J. Steffel, F. R. Eberli, M. Joner, G. Nakazawa, F. C. Tanner, and R. Virmani. Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 115:1051–1058, 2007.

    Article  PubMed  Google Scholar 

  24. McGinty, S. A decade of modelling drug release from arterial stents. Math. Biosci. 257:80–90, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. McGinty, S., S. McKee, R. M. Wadsworth, and C. McCormick. Modelling drug-eluting stents. Math. Med. Biol. 28:1–29, 2011.

    Article  PubMed  Google Scholar 

  26. McGinty, S., T. N. Vo Tuoi, M. Meere, and Mc Cormick C. McKee. Some design considerations for polymer-free drug-eluting stents: a mathematical approach. Acta Biomater. 18:213–225, 2015.

    Article  CAS  PubMed  Google Scholar 

  27. Miyazaki, S., Y. Hiasa, T. Takahashi, Y. Yano, T. Minami, N. Murakami, M. Mizobe, Y. Tobetto, T. Nakagawa, P. M. Chen, R. Ogura, H. Miyajima, K. Yuba, S. Hosokawa, K. Kishi, and R. Ohtani. In vivo optical coherence tomography of very late drug-eluting stent thrombosis compared with late in-stent restenosis. Circ. J. 76:390–398, 2012.

    Article  PubMed  Google Scholar 

  28. Mongrain, R., I. Faik, R. L. Leask, J. R. Cabau, E. Larose, and O. F. Bertrand. Effects of diffusion coefficients and struts apposition using numerical simulations for drug eluting coronary stents. J. Biomech. Eng. 129:733–742, 2007.

    Article  PubMed  Google Scholar 

  29. Morton, A. C., D. Crossman, and J. Gunn. The influence of physical stent parameters upon restenosis. Pathol. Biol. 52:196–205, 2004.

    Article  PubMed  Google Scholar 

  30. Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, R. P. Caputo, D. J. Kereiakes, D. O. Williams, P. S. Teirstein, J. L. Jaeger, and R. E. Kuntz. Sirolimus-eluting stent versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349:1315–1323, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Ong, A. T., E. P. McFadden, E. Regar, P. P. de Jaegere, R. T. van Domburg, and P. W. Serruys. Late angiographic stent thrombosis (LAST) events with drug-eluting stents. J. Am. Coll. Cardiol. 45:2088–2092, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Pache, J., J. Kastrati, H. Mehilli, H. Schuhlen, F. Dotzer, J. Hausleiter, M. Fleckenstein, F. J. Newmann, U. Sattleburger, C. Schmitt, M. Muller, J. Dirschinger, and A. Schömig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1283–1288, 2003.

    Article  PubMed  Google Scholar 

  33. Pant, S., N. W. Bressloff, A. I. J. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38:1893–1907, 2010.

    Article  PubMed  Google Scholar 

  34. Parry, T. J., R. Brosius, R. Thyagarajan, D. Carter, D. Argentieri, R. Falotico, and J. Siekierka. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries. Eur. J. Pharmacol. 524:19–29, 2005.

    Article  CAS  PubMed  Google Scholar 

  35. Pfisterer, M., H. P. Brunner-La Rocca, P. T. Buser, P. Rickenbacher, P. Hunziker, C. Mueller, R. Jeger, F. Bader, S. Osswald, and C. Kaiser. Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents. J. Am. Coll. Cardiol. 48:2584–2591, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Pontrelli, G., and F. de Monte. A multi-layer porous wall model for coronary drug-eluting stents. Int. J. Heat Mass Transf. 53:3629–3637, 2010.

    Article  CAS  Google Scholar 

  37. Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, and M. A. Jog. Developing pulsatile flow in a deployed coronary stent. J. Biomech. Eng. 128:347–359, 2006.

    Article  PubMed  Google Scholar 

  38. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    Article  CAS  PubMed  Google Scholar 

  39. Rogers, C., C. Parikh, P. Seifert, and E. R. Edelman. Endogenous sell seeding—remnant endothelium after stenting enhances vascular repair. Circulation 94:2909–2914, 1996.

    Article  CAS  PubMed  Google Scholar 

  40. Sarno, G., B. Lagerqvist, O. Fröbert, J. Nilsson, G. Olivecrona, E. Omerovic, N. Saleh, D. Venetzanos, and S. James. Lower risk of stent thrombosis and restenosis with unrestricted use of ‘new-generation’ drug-eluting stents: a report from the nationwide Swedish coronary angiography and angioplasty registry (SCAAR). Eur. Heart J. 33:606–613, 2012.

    Article  PubMed  Google Scholar 

  41. Seo, T. W., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.

    Article  PubMed  Google Scholar 

  42. Sousa, J. E., M. A. Costa, A. C. Abizaid, B. J. Rensing, A. S. Abizaid, L. F. Tanajura, K. Kozuma, G. V. Langenhove, A. G. Sousa, R. Falotico, J. Jaeger, J. J. Popma, and P. W. Serruys. Sustained suppression of neointimal proliferation by sirolimus-eluting stents. Circulation 104:2007–2011, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Tezduyar, T. E., S. Sathe, M. Schwaab, and B. S. Conklin. Arterial fluid mechanics modeling with stabilized space-time fluid-structure interaction technique. Int. J. Numer. Methods Fluids 57:601–629, 2008.

    Article  CAS  Google Scholar 

  44. Tzafriri, A. R., A. D. Levin, and E. R. Edelman. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. Cell Prolif. 42:348–363, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Van der Heiden, K., F. J. Gijsen, A. Narracott, S. Hsiao, I. Halliday, J. Gunn, J. J. Wentzel, and P. C. Evans. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013.

    Article  PubMed  Google Scholar 

  46. Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, P. W. Serruys, and C. J. Slager. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

TS was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF), Korea. This work was funded in part by an endowment in Cardiovascular Cellular Engineering from the AXA Research Fund.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul I. Barakat.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, T., Lafont, A., Choi, SY. et al. Drug-Eluting Stent Design is a Determinant of Drug Concentration at the Endothelial Cell Surface. Ann Biomed Eng 44, 302–314 (2016). https://doi.org/10.1007/s10439-015-1531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1531-0

Keywords

Navigation