Skip to main content

Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration

Abstract

The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    Ankrum, J., and J. M. Karp. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16:203–209, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Auletta, J. J., A. M. Bartholomew, R. T. Maziarz, R. J. Deans, R. H. Miller, et al. The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis. Immunotherapy 4:529–547, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bianco, P., P. G. Robey, and P. J. Simmons. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319, 2008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bongiorno, T., J. Kazlow, R. Mezencev, S. Griffiths, R. Olivares-Navarrete, et al. Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. J. Biomech. 47:2197–2204, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Booth-Gauthier, E. A., V. Du, M. Ghibaudo, A. D. Rape, K. N. Dahl, and B. Ladoux. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. (Camb.) 5:569–577, 2013.

    CAS  Article  Google Scholar 

  6. 6.

    Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64:278–294, 1997.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Caplan, A. I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J. Cell. Physiol. 213:341–347, 2007.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Caplan, A. I. All MSCs are pericytes? Cell Stem Cell 3:229–230, 2008.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749, 2007.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Culme-Seymour, E. J., N. L. Davie, D. A. Brindley, S. Edwards-Parton, and C. Mason. A decade of cell therapy clinical trials (2000-2010). Regenerative Med. 7:455–462, 2012.

    CAS  Article  Google Scholar 

  11. 11.

    Dahl, K. N., P. Scaffidi, M. F. Islam, A. G. Yodh, K. L. Wilson, and T. Misteli. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 103:10271–10276, 2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dimarino, A. M., A. I. Caplan, and T. L. Bonfield. Mesenchymal stem cells in tissue repair. Front. Immunol. 4:201, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317, 2006.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Dong, C., R. Skalak, and K. L. Sung. Cytoplasmic rheology of passive neutrophils. Biorheology 28:557–567, 1991.

    CAS  PubMed  Google Scholar 

  15. 15.

    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Freyman, T. M., I. V. Yannas, R. Yokoo, and L. J. Gibson. Fibroblast contractile force is independent of the stiffness which resists the contraction. Exp. Cell Res. 272:153–162, 2002.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Friedenstein, A. J., R. K. Chailakhyan, N. V. Latsinik, A. F. Panasyuk, and I. V. Keiliss-Borok. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340, 1974.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Friedenstein, A. J., A. A. Ivanov-Smolenski, R. K. Chajlakjan, U. F. Gorskaya, A. I. Kuralesova, et al. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp. Hematol. 6:440–444, 1978.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ghibaudo, M., J. M. Di Meglio, P. Hersen, and B. Ladoux. Mechanics of cell spreading within 3D-micropatterned environments. Lab Chip 11:805–812, 2011.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Hassan, W. U., U. Greiser, and W. Wang. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 22:313–325, 2014.

    Article  PubMed  Google Scholar 

  21. 21.

    Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hoffman, B. D., and J. C. Crocker. Cell mechanics: dissecting the physical responses of cells to force. Annu. Rev. Biomed. Eng. 11:259–288, 2009.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Karp, J. M., and G. S. Leng Teo. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216, 2009.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Koc, O. N., S. L. Gerson, B. W. Cooper, S. M. Dyhouse, S. E. Haynesworth, et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 18:307–316, 2000.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kollmannsberger, P., C. T. Mierke, and B. Fabry. Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter 7:3127–3132, 2011.

    CAS  Article  Google Scholar 

  26. 26.

    Lazarus, H. M., S. E. Haynesworth, S. L. Gerson, N. S. Rosenthal, and A. I. Caplan. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 16:557–564, 1995.

    CAS  PubMed  Google Scholar 

  27. 27.

    Lazarus, H. M., O. N. Koc, S. M. Devine, P. Curtin, R. T. Maziarz, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood Marrow Transpl. 11:389–398, 2005.

    Article  Google Scholar 

  28. 28.

    Lincoln, B., F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck. High-throughput rheological measurements with an optical stretcher. Methods Cell Biol. 83:397–423, 2007.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Mach, A. J., O. B. Adeyiga, and D. Di Carlo. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip 13:1011–1026, 2013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Maloney, J. M., D. Nikova, F. Lautenschlager, E. Clarke, R. Langer, et al. Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys. J. 99:2479–2487, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Mathieu, P. S., and E. G. Loboa. Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng. B 18:436–444, 2012.

    CAS  Article  Google Scholar 

  32. 32.

    McAndrews, K. M., D. J. McGrail, N. D. Quach, and M. R. Dawson. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation. Phys. Biol. 11:056004, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Murphy, M. B., K. Moncivais, and A. I. Caplan. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp. Mol. Med. 45:e54, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, et al. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Polacheck, W. J., I. K. Zervantonakis, and R. D. Kamm. Tumor cell migration in complex microenvironments. Cell. Mol. Life Sci. CMLS 70:1335–1356, 2013.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ribeiro, A. J., S. Tottey, R. W. Taylor, R. Bise, T. Kanade, et al. Mechanical characterization of adult stem cells from bone marrow and perivascular niches. J. Biomech. 45:1280–1287, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Riehl, B. D., J. S. Lee, L. Ha, and J. Y. Lim. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors. J. R. Soc. Interface 12:20141351, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sensebe, L., M. Krampera, H. Schrezenmeier, P. Bourin, and R. Giordano. Mesenchymal stem cells for clinical application. Vox Sang. 98:93–107, 2010.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Sraj, I., C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, et al. Cell deformation cytometry using diode-bar optical stretchers. J. Biomed. Opt. 15:047010, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Sun, Y., C. S. Chen, and J. Fu. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu. Rev. Biophys. 41:519–542, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wolf, K., and P. Friedl. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 21:736–744, 2011.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Wang, Y.-L., and D. E. Discher. Cell Mechanics, Vol. 608. Amsterdam: Elsevier, p. 26, 2007.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge use of microfabrication facilities of S. Anna and help from S. Vuong (Carnegie Mellon, Chemical Engineering). This work is supported by the NSF (NSF-CBET-0954421 and CMMI-1300476 to KND), fellowships from ARCS, Bertucci, and James C. Meade (STS) and National Center for Regenerative Medicine and Cell Therapy Integrated Services (CTIS) Core Facility of the Case Comprehensive Cancer Center (P30 CA43703 to HML). B.L. acknowledges financial supports from the Agence Nationale de la Recherche (Program Nanotechnologies & Nanosystems 2013 ANR 13-NANO-0011), the Human Frontier Science Program (Grant RGP0040/2012), the Institut Universitaire de France and the Mechanobiology Institute (Singapore).

Author contributions

STS designed research, performed research, analyzed data, wrote the paper. WL performed research, analyzed data. EB designed research, performed research, analyzed data. BL contributed analytic tools, wrote the paper. HML contributed analytic tools, contributed biological samples, wrote the paper. KND designed research, analyzed data, wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kris Noel Dahl.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spagnol, S.T., Lin, WC., Booth, E.A. et al. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration. Ann Biomed Eng 44, 2123–2131 (2016). https://doi.org/10.1007/s10439-015-1508-z

Download citation

Keywords

  • Human mesenchymal stem cells
  • Micropipette aspiration
  • Cell mechanics
  • Mechanobiology