Skip to main content

Oxygen Mass Transport in Stented Coronary Arteries

Abstract

Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  1. Camenzind, E., P. G. Steg, and W. Wijns. Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. Circulation 115:1440–1455, 2007; (discussion 1455).

    Article  PubMed  Google Scholar 

  2. Caputo M, C. Chiastra, C. Cianciolo, et al. Simulation of oxygen transfer in stented arteries and correlation with in-stent restenosis. Int J Numer Method Biomed Eng. 29:1373–1387, 2013.

    Article  Google Scholar 

  3. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. Mechanics of the Circulation. Oxford: Oxford University Press, 1978.

    Google Scholar 

  4. Carroll, G. T., P. D. Devereux, D. N. Ku, T. M. McGloughlin, and M. T. Walsh. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport. Biomed Eng Online. 9:34, 2010.

    PubMed Central  Article  PubMed  Google Scholar 

  5. Cha, W., and R. L. Beissinger. Evaluation of shear-induced particle diffusivity in red cell ghosts suspensions. Korean J. Chem. Eng. 18:479–485, 2001.

    Article  CAS  Google Scholar 

  6. Cheema, A. N., T. Hong, N. Nili, et al. Adventitial microvessel formation after coronary stenting and the effects of SU11218, a tyrosine kinase inhibitor. J. Am. Coll. Cardiol. 47:1067–1075, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Coppola, G., and C. G. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6:519–528, 2009.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  8. Diller, T. E. Comparison of red cell augmented diffusion and platelet transport. J. Biomech. Eng. 110:161–163, 1988.

    Article  CAS  PubMed  Google Scholar 

  9. Goldman, D. Theoretical models of microvascular oxygen transport to tissue. Microcirculation. 15:795–811, 2008.

    PubMed Central  Article  PubMed  Google Scholar 

  10. Goldsmith, H. Red cell motions and wall interactions in tube flow. Fed Proc. 30:1578–1590, 1971.

    CAS  PubMed  Google Scholar 

  11. Goldsmith, H., and J. Marlow. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 71:383–407, 1979.

    Article  Google Scholar 

  12. Hill A V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J Physiol. 41:iv–vii, 1910.

    Google Scholar 

  13. Holzapfel, G. A., R. W. Ogden, C. Lally, and P. J. Prendergast. Simulation of In-stent Restenosis for the Design of Cardiovascular Stents. Berlin Heidelberg: Springer, pp. 255–267, 2006.

    Google Scholar 

  14. Jung, H., J. W. Choi, and C. G. Park. Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery. Korea Aust Rheol J. 16:101–108, 2004.

    Google Scholar 

  15. Kolandavel, M. K., E.-T. Fruend, S. Ringgaard, and P. G. Walker. The effects of time varying curvature on species transport in coronary arteries. Ann. Biomed. Eng. 34:1820–1832, 2006.

    PubMed Central  Article  PubMed  Google Scholar 

  16. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5:293–302, 1985.

    Article  CAS  PubMed  Google Scholar 

  17. Ma, P., X. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.

    Article  CAS  PubMed  Google Scholar 

  18. Martin, D. M., E. A. Murphy, and F. J. Boyle. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Med. Eng. Phys. 36:1047–1056, 2014.

    Article  PubMed  Google Scholar 

  19. Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech. Eng. 119:469–475, 1997.

    Article  CAS  PubMed  Google Scholar 

  20. Murphy, E. A., and F. J. Boyle. Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovasc Eng Technol. 3:353–373, 2012.

    Article  Google Scholar 

  21. Pittman, R. N. Regulation of tissue oxygenation. Colloq. Ser. Integr. Syst. Physiol. Mol. Funct. 3:1–100, 2011.

    Google Scholar 

  22. Popel, A. S. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 17:257–321, 1989.

    CAS  PubMed  Google Scholar 

  23. Richardson, R. B. Age-dependent changes in oxygen tension, radiation dose and sensitivity within normal and diseased coronary arteries-Part B: modeling oxygen diffusion into vessel walls. Int. J. Radiat. Biol. 84:849–857, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Sanada, J.-I., O. Matsui, J. Yoshikawa, and T. Matsuoka. An experimental study of endovascular stenting with special reference to the effects on the aortic vasa vasorum. Cardiovasc. Intervent. Radiol. 21:45–49, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Santilli, S. M., R. B. Stevens, J. G. Anderson, W. D. Payne, and M. D. Caldwell. Transarterial wall oxygen gradients at the dog carotid bifurcation. Am. J. Physiol. Hear Circ. Physiol. 268:H155–H161, 1995.

    CAS  Google Scholar 

  26. Santilli, S. M., A. S. Tretinyak, and E. S. Lee. Transarterial wall oxygen gradients at the deployment site of an intra-arterial stent in the rabbit. Am. J. Physiol. Heart Circ. Physiol. 279:H1518–H1525, 2000.

    CAS  PubMed  Google Scholar 

  27. Stangeby, D. K., and C. R. Ethier. Computational analysis of coupled blood-wall arterial LDL transport. J. Biomech. Eng. 124:1–8, 2002.

    Article  PubMed  Google Scholar 

  28. Tada, S. Numerical study of oxygen transport in a carotid bifurcation. Phys. Med. Biol. 55:3993–4010, 2010.

    Article  PubMed  Google Scholar 

  29. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai, A. G., P. Cabrales, and M. Intaglietta. The physics of oxygen delivery: facts and controversies. Antioxid. Redox Signal. 12:683–691, 2010.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  31. Tsai, A. G., P. C. Johnson, and M. Intaglietta. Oxygen gradients in the microcirculation. Physiol. Rev. 83:933–963, 2003.

    Article  CAS  PubMed  Google Scholar 

  32. Vadapalli, A., R. N. Pittman, and A. S. Popel. Estimating oxygen transport resistance of the microvascular wall. Am. J. Physiol. Heart Circ. Physiol. 279:H657–H671, 2000.

    CAS  PubMed  Google Scholar 

  33. Vavuranakis, M., F. Sigala, D. A. Vrachatis, et al. Quantitative analysis of carotid plaque vasa vasorum by CEUS and correlation with histology after endarterectomy. Vasa. 42:184–195, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the DJEI/DES/SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. Also, the first author would like to express his appreciation to the Fiosraigh PhD Scholarship Programme at Dublin Institute of Technology for its support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin A. Murphy.

Additional information

Associate Editor Peter McHugh oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murphy, E.A., Dunne, A.S., Martin, D.M. et al. Oxygen Mass Transport in Stented Coronary Arteries. Ann Biomed Eng 44, 508–522 (2016). https://doi.org/10.1007/s10439-015-1501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1501-6

Keywords

  • Coronary artery disease
  • Stents
  • In-stent restenosis
  • Hypoxia
  • Computational fluid dynamics