Camenzind, E., P. G. Steg, and W. Wijns. Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. Circulation 115:1440–1455, 2007; (discussion 1455).
Article
PubMed
Google Scholar
Caputo M, C. Chiastra, C. Cianciolo, et al. Simulation of oxygen transfer in stented arteries and correlation with in-stent restenosis. Int J Numer Method Biomed Eng. 29:1373–1387, 2013.
Article
Google Scholar
Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. Mechanics of the Circulation. Oxford: Oxford University Press, 1978.
Google Scholar
Carroll, G. T., P. D. Devereux, D. N. Ku, T. M. McGloughlin, and M. T. Walsh. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport. Biomed Eng Online. 9:34, 2010.
PubMed Central
Article
PubMed
Google Scholar
Cha, W., and R. L. Beissinger. Evaluation of shear-induced particle diffusivity in red cell ghosts suspensions. Korean J. Chem. Eng. 18:479–485, 2001.
Article
CAS
Google Scholar
Cheema, A. N., T. Hong, N. Nili, et al. Adventitial microvessel formation after coronary stenting and the effects of SU11218, a tyrosine kinase inhibitor. J. Am. Coll. Cardiol. 47:1067–1075, 2006.
Article
CAS
PubMed
Google Scholar
Coppola, G., and C. G. Caro. Arterial geometry, flow pattern, wall shear and mass transport: potential physiological significance. J. R. Soc. Interface 6:519–528, 2009.
PubMed Central
Article
CAS
PubMed
Google Scholar
Diller, T. E. Comparison of red cell augmented diffusion and platelet transport. J. Biomech. Eng. 110:161–163, 1988.
Article
CAS
PubMed
Google Scholar
Goldman, D. Theoretical models of microvascular oxygen transport to tissue. Microcirculation. 15:795–811, 2008.
PubMed Central
Article
PubMed
Google Scholar
Goldsmith, H. Red cell motions and wall interactions in tube flow. Fed Proc. 30:1578–1590, 1971.
CAS
PubMed
Google Scholar
Goldsmith, H., and J. Marlow. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J. Colloid Interface Sci. 71:383–407, 1979.
Article
Google Scholar
Hill A V. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curve. J Physiol. 41:iv–vii, 1910.
Google Scholar
Holzapfel, G. A., R. W. Ogden, C. Lally, and P. J. Prendergast. Simulation of In-stent Restenosis for the Design of Cardiovascular Stents. Berlin Heidelberg: Springer, pp. 255–267, 2006.
Google Scholar
Jung, H., J. W. Choi, and C. G. Park. Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery. Korea Aust Rheol J. 16:101–108, 2004.
Google Scholar
Kolandavel, M. K., E.-T. Fruend, S. Ringgaard, and P. G. Walker. The effects of time varying curvature on species transport in coronary arteries. Ann. Biomed. Eng. 34:1820–1832, 2006.
PubMed Central
Article
PubMed
Google Scholar
Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 5:293–302, 1985.
Article
CAS
PubMed
Google Scholar
Ma, P., X. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.
Article
CAS
PubMed
Google Scholar
Martin, D. M., E. A. Murphy, and F. J. Boyle. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Med. Eng. Phys. 36:1047–1056, 2014.
Article
PubMed
Google Scholar
Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech. Eng. 119:469–475, 1997.
Article
CAS
PubMed
Google Scholar
Murphy, E. A., and F. J. Boyle. Reducing in-stent restenosis through novel stent flow field augmentation. Cardiovasc Eng Technol. 3:353–373, 2012.
Article
Google Scholar
Pittman, R. N. Regulation of tissue oxygenation. Colloq. Ser. Integr. Syst. Physiol. Mol. Funct. 3:1–100, 2011.
Google Scholar
Popel, A. S. Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 17:257–321, 1989.
CAS
PubMed
Google Scholar
Richardson, R. B. Age-dependent changes in oxygen tension, radiation dose and sensitivity within normal and diseased coronary arteries-Part B: modeling oxygen diffusion into vessel walls. Int. J. Radiat. Biol. 84:849–857, 2008.
Article
CAS
PubMed
Google Scholar
Sanada, J.-I., O. Matsui, J. Yoshikawa, and T. Matsuoka. An experimental study of endovascular stenting with special reference to the effects on the aortic vasa vasorum. Cardiovasc. Intervent. Radiol. 21:45–49, 1998.
Article
CAS
PubMed
Google Scholar
Santilli, S. M., R. B. Stevens, J. G. Anderson, W. D. Payne, and M. D. Caldwell. Transarterial wall oxygen gradients at the dog carotid bifurcation. Am. J. Physiol. Hear Circ. Physiol. 268:H155–H161, 1995.
CAS
Google Scholar
Santilli, S. M., A. S. Tretinyak, and E. S. Lee. Transarterial wall oxygen gradients at the deployment site of an intra-arterial stent in the rabbit. Am. J. Physiol. Heart Circ. Physiol. 279:H1518–H1525, 2000.
CAS
PubMed
Google Scholar
Stangeby, D. K., and C. R. Ethier. Computational analysis of coupled blood-wall arterial LDL transport. J. Biomech. Eng. 124:1–8, 2002.
Article
PubMed
Google Scholar
Tada, S. Numerical study of oxygen transport in a carotid bifurcation. Phys. Med. Biol. 55:3993–4010, 2010.
Article
PubMed
Google Scholar
Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.
Article
CAS
PubMed
Google Scholar
Tsai, A. G., P. Cabrales, and M. Intaglietta. The physics of oxygen delivery: facts and controversies. Antioxid. Redox Signal. 12:683–691, 2010.
PubMed Central
Article
CAS
PubMed
Google Scholar
Tsai, A. G., P. C. Johnson, and M. Intaglietta. Oxygen gradients in the microcirculation. Physiol. Rev. 83:933–963, 2003.
Article
CAS
PubMed
Google Scholar
Vadapalli, A., R. N. Pittman, and A. S. Popel. Estimating oxygen transport resistance of the microvascular wall. Am. J. Physiol. Heart Circ. Physiol. 279:H657–H671, 2000.
CAS
PubMed
Google Scholar
Vavuranakis, M., F. Sigala, D. A. Vrachatis, et al. Quantitative analysis of carotid plaque vasa vasorum by CEUS and correlation with histology after endarterectomy. Vasa. 42:184–195, 2013.
Article
PubMed
Google Scholar