Skip to main content
Log in

Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endothelial cells (ECs) line the interior of blood and lymphatic vessels and experience spatially varying wall shear stress (WSS) as an intrinsic part of their physiological function. How ECs, and mammalian cells generally, sense spatially varying WSS remains poorly understood, due in part to a lack of convenient tools for exposing cells to spatially varying flow patterns. We built a multiplexed device, termed a 6-well impinging flow chamber, that imparts controlled WSS gradients to a six-well tissue culture plate. Using this device, we investigated the migratory response of lymphatic microvascular ECs, umbilical vein ECs, primary fibroblasts, and epithelial cells to WSS gradients on hours to days timescales. We observed that lymphatic microvascular ECs migrate upstream, against the direction of flow, a response that was unique among all the cells types investigated here. Time-lapse, live cell imaging revealed that the microtubule organizing center relocated to the upstream side of the nucleus in response to the applied WSS gradient. To further demonstrate the utility of our device, we screened for the involvement of canonical signaling pathways in mediating this upstream migratory response. These data highlight the importance of WSS magnitude and WSS spatial gradients in dictating the cellular response to fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Allee, W. C. An experimental analysis of the relation between physiological states and rheotaxis in isopoda. J. Exp. Zool. 13:269–344, 1912.

    Article  Google Scholar 

  2. Chiu, J. J., and S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1):327–387, 2011.

    Article  PubMed  Google Scholar 

  3. Chiu, J. J., D. L. Wang, S. Chien, R. Skalak, and S. Usami. Effects of disturbed flow on endothelial cells. J. Biomech. Eng. 120(1):2–8, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Chung, T. H., S. M. Wang, Y. C. Chang, Y. L. Chen, and J. C. Wu. 18beta-glycyrrhetinic acid promotes src interaction with connexin43 in rat cardiomyocytes. J. Cell. Biochem. 100(3):653–664, 2007.

    Article  CAS  PubMed  Google Scholar 

  5. Coan, D. E., A. R. Wechezak, R. F. Viggers, and L. R. Sauvage. Effect of shear stress upon localization of the Golgi apparatus and microtubule organizing center in isolated cultured endothelial cells. J. Cell Sci. 104(Pt 4):1145–1153, 1993.

    PubMed  Google Scholar 

  6. DePaola, N., P. F. Davies, W. F. Pritchard, Jr, L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. USA 96(6):3154–3159, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear-stress gradients. Arterioscler. Thromb. 12(11):1254–1257, 1992.

    Article  CAS  PubMed  Google Scholar 

  8. Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear-stress gradients (Vol 12, Pg 1254–1257, 1992). Arterioscler. Thromb. 13(3):465–465, 1993.

    Google Scholar 

  9. Dolan, J. M., H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann. Biomed. Eng. 39(6):1620–1631, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Francis, R., X. Xu, H. Park, C. J. Wei, S. Chang, B. Chatterjee, and C. Lo. Connexin43 modulates cell polarity and directional cell migration by regulating microtubule dynamics. PLoS One 6(10):e26379, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guan, X., S. Wilson, K. K. Schlender, and R. J. Ruch. Gap-junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid. Mol. Carcinog. 16(3):157–164, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Hove, J. R., R. W. Köster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser, and M. Gharib. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919):172–177, 2003.

    Article  CAS  PubMed  Google Scholar 

  13. Ilic, D., Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fujimoto, M. Okada, and T. Yamamoto. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377(6549):539–544, 1995.

    Article  CAS  PubMed  Google Scholar 

  14. Koo, M. A., J. K. Kang, M. H. Lee, H. J. Seo, B. J. Kwon, K. E. You, M. S. Kim, D. Kim and J. C. Park. Stimulated migration and penetration of vascular endothelial cells into poly (l-lactic acid) scaffolds under flow conditions. Biomater. Res. 18(7), 2014.

  15. LaMack, J. A., and M. H. Friedman. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am. J. Physiol.-Heart C 293(5):H2853–H2859, 2007.

    Article  CAS  Google Scholar 

  16. Lucitti, J. L., E. A. Jones, C. Huang, J. Chen, S. E. Fraser, and M. E. Dickinson. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317–3326, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masuda, M., and K. Fujiwara. The biased lamellipodium development and microtubule organizing center position in vascular endothelial cells migrating under the influence of fluid flow. Biol. Cell 77(3):237–245, 1993.

    Article  CAS  PubMed  Google Scholar 

  18. Mitra, S. K., D. A. Hanson, and D. D. Schlaepfer. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6(1):56–68, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Mohamied, Y., E. M. Rowland, E. L. Bailey, S. J. Sherwin, M. A. Schwartz, and P. D. Weinberg. Change of direction in the biomechanics of atherosclerosis. Ann. Biomed. Eng. 43:16–25, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohan, S., N. Mohan, A. J. Valente, and E. A. Sprague. Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. 276(5 Pt 1):C1100–C1107, 1999.

    CAS  PubMed  Google Scholar 

  21. Muthard, R. W., and S. L. Diamond. Side view thrombosis microfluidic device with controllable wall shear rate and transthrombus pressure gradient. Lab Chip 13(10):1883–1891, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ostrowski, M. A., N. F. Huang, T. W. Walker, T. Verwijlen, C. Poplawski, A. S. Khoo, J. P. Cooke, G. G. Fuller, and A. R. Dunn. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys. J. 106(2):366–374, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palazzo, A. F., C. H. Eng, D. D. Schlaepfer, E. E. Marcantonio, and G. G. Gundersen. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303(5659):836–839, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Polacheck, W. J., A. E. German, A. Mammoto, D. E. Ingber, and R. D. Kamm. Mechanotransduction of fluid stresses governs 3D cell migration. Proc. Natl. Acad. Sci. USA 111(7):2447–2452, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95(12):6044–6051, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Remuzzi, A., C. F. Dewey, Jr, P. F. Davies, and M. A. Gimbrone, Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology 21(4):617–630, 1984.

    CAS  PubMed  Google Scholar 

  28. Rogers, K. A., N. H. McKee, and V. I. Kalnins. Preferential orientation of centrioles toward the heart in endothelial cells of major blood vessels is reestablished after reversal of a segment. Proc. Natl. Acad. Sci. USA 82(10):3272–3276, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rouleau, L., M. Farcas, J. C. Tardif, R. Mongrain, and R. L. Leask. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients. J. Biomech. Eng.-T Asme 8:081013, 2010.

    Article  Google Scholar 

  30. Sakamoto, N., N. Saito, X. Han, T. Ohashi, and M. Sato. Effect of spatial gradient in fluid shear stress on morphological changes in endothelial cells in response to flow. Biochem. Biophys. Res. Commun. 395(2):264–269, 2010.

    Article  CAS  PubMed  Google Scholar 

  31. Sato, M., N. Saito, N. Sakamoto, and T. Ohashi. High wall shear stress gradient suppress morphological responses of endothelial cells to fluid flow. IFMBE Proc. 25:312–313, 2010.

    Google Scholar 

  32. Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3(1):a003228, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7):676–682, 2012.

    Article  CAS  PubMed  Google Scholar 

  34. Szymanski, M. P., E. Metaxa, H. Meng, and J. Kolega. Endothelial cell layer subjected to impinging flow mimicking the apex of an arterial bifurcation. Ann. Biomed. Eng. 36(10):1681–1689, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Theveneau, E., L. Marchant, S. Kuriyama, M. Gull, B. Moepps, M. Parsons, and R. Mayor. Collective chemotaxis requires contact-dependent cell polarity. Dev. Cell 19(1):39–53, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ting, L. H., J. R. Jahn, J. I. Jung, B. R. Shuman, S. Feghhi, S. J. Han, M. L. Rodriguez, and N. J. Sniadecki. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions. Am. J. Physiol. Heart Circ. Physiol. 302(11):H2220–H2229, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomar, A., and D. D. Schlaepfer. Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr. Opin. Cell Biol. 21(5):676–683, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsou, J. K., R. M. Gower, H. J. Ting, U. Y. Schaff, M. F. Insana, A. G. Passerini, and S. I. Simon. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15(4):311–323, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tzima, E., M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431, 2005.

    Article  CAS  PubMed  Google Scholar 

  40. Weber, G. F., M. A. Bjerke, and D. W. DeSimone. A mechanoresponsive cadherin–keratin complex directs polarized protrusive behavior and collective cell migration. Dev. Cell 22(1):104–115, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshikawa, N., H. Ariyoshi, Y. Aono, M. Sakon, T. Kawasaki, and M. Monden. Gradients in cytoplasmic calcium concentration ([Ca 2+] i) in migrating human umbilical vein endothelial cells (HUVECs) stimulated by shear-stress. Life Sci. 65(24):2643–2651, 1999.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a National Institutes of Health (NIH) New Innovator Award 1DP2OD007078-01 (A.R.D.), NIH R01HL128779 (A.R.D. and G.G.F.), and a Burroughs-Wellcome Career Award at the Scientific Interface (A.R.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Dunn.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrowski, M.A., Huang, E.Y., Surya, V.N. et al. Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients. Ann Biomed Eng 44, 2261–2272 (2016). https://doi.org/10.1007/s10439-015-1500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1500-7

Keywords

Navigation