Novel Balloon Surface Scanning Device for Intraoperative Breast Endomicroscopy

Abstract

Recent advances in fluorescence confocal endomicroscopy have allowed real-time identification of residual tumour cells on the walls of the cavity left by breast conserving surgery. However, it is difficult to systematically survey the surgical site because of the small imaging field-of-view of these probes, compounded by tissue deformation and inconsistent probe-tissue contact when operated manually. Therefore, a new robotized scanning device is required for controlled, large area scanning and mosaicing. This paper presents a robotic scanning probe with an inflatable balloon, providing stable cavity scanning over undulating surfaces. It has a compact design, with an outer diameter of 4 mm and a working channel of 2.2 mm, suitable for a leached flexible fibre bundle endomicroscope probe. With the probe inserted, the tip positioning accuracy measured to be 0.26 mm for bending and 0.17 mm for rotational motions. Large area scanning was achieved (25–35 mm2) and the experimental results demonstrate the potential clinical value of the device for intraoperative cavity tumour margin evaluation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    Abeytunge, S., Y. Li, B. Larson, G. Peterson, E. Seltzer, R. Toledo-Crow, et al. Confocal microscopy with strip mosaicing for rapid imaging over large areas of excised tissue. J. Biomed. Opt. 18:061227, 2013.

    Article  PubMed Central  Google Scholar 

  2. 2.

    Chang, T. P., D. R. Leff, S. Shousha, D. J. Hadjiminas, R. Ramakrishnan, M. Gudi, R. Al-Mufti, M. R. Hughes, A. Darzi, and G. Z. Yang. Imaging of breast cancer morphology using probe-based confocal laser endomicroscopy: towards a novel imaging tool for real-time intra-operative cavity scanning. Eur. J. Surg. Oncol. 39(11):S80, 2013.

    Article  Google Scholar 

  3. 3.

    Dario, P., M. Carrozza, C. Marcacci, M. Attanasio, B. Magnami, O. Tonet, and G. Megali. A novel mechatronic tool for computer-assisted arthroscopy. IEEE Trans. Inform. Technol. Biomed. 4(1):15–28, 2000.

    CAS  Article  Google Scholar 

  4. 4.

    Erden, M. S., B. Rosa, N. Boularot, B. Gayet, G. Morel, and J. Szewczyk. Conic-Spiraleur: a miniature distal scanner for confocal microlaparoscope. IEEE/ASME Trans. Mechatron. 19(6):1786–1798, 2014.

    Article  Google Scholar 

  5. 5.

    Ferlay, J., et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136:E359–E386, 2015.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Gmitro, A. F., and D. Aziz. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18:565–567, 1993.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Jabbour, J. M., M. A. Saldua, J. N. Bixler, and K. C. Maitland. Confocal endomicroscopy instrumentation and medical applications. Ann. Biomed. Eng. 40:378–397, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Jeevan, R., D. Cromwell, M. Trivella, G. Lawrence, O. Kearins, J. Pereira, C. Sheppard, C. M. Caddy, and J. H. van der Meulen. Reoperation rates after breast conserving surgery for breast cancer among women in England: retrospective study of hospital episode statistics. BMJ 345:e4505, 2012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kreike, B., A. A. Hart, T. van de Velde, J. Borger, H. Peterse, E. Rutgers, H. Bartelink, and M. J. van de Vijver. Continuing risk of ipsilateral breast relapse after breast-conserving therapy at long-term follow-up. Int. J. Radiat. Oncol. Biol. Phys. 71:1014–1021, 2008.

    Article  PubMed  Google Scholar 

  10. 10.

    Laemmel, E., M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Le Vicaut. Fibered confocal fluorescence microscopy (Cell-viZio™) facilitates extended imaging in the field of microcirculation. J. Vasc. Res. 41(5):400–411, 2004.

    Article  PubMed  Google Scholar 

  11. 11.

    Le Goualher, G., A. Perchant, M. Genet, C. Cave, B. Viellerobe, F. Berier, B. Abrat, and N. Ayache. Towards optical biopsies with an integrated fibered confocal fluorescence microscope. Part II. In: Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, Saint-Malo, France, pp. 761–768, 2004.

  12. 12.

    Mahé, J., T. Vercauteren, B. Rosa, and J. Dauguet. A Viterbi approach to topology inference for large scale endomicroscopy video mosaicing. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013, pp. 404–411, 2005.

  13. 13.

    Newton, R. C., S. V. Kemp, P. Shah, D. Elson, A. Darzi, K. Shibuya, S. Mulgrew, and G. Z. Yang. Progress toward optical biopsy: bringing the microscope to the patient. Lung 189:111–119, 2011.

    Article  PubMed  Google Scholar 

  14. 14.

    Newton, R. C., S. V. Kemp, G. Z. Yang, A. Darzi, M. N. Sheppard, and P. L. Shah. Tracheobronchial amyloidosis and confocal endomicroscopy. Respiration 82(2):209–211, 2011.

    Article  PubMed  Google Scholar 

  15. 15.

    Newton, R. C., S. V. Kemp, G. Z. Yang, D. Ellson, A. Darzi, and P. Shah. Imaging parenchymal lung diseases with confocal endomicroscopy. Respir. Med. 106(1):127–137, 2012.

    Article  PubMed  Google Scholar 

  16. 16.

    Newton, R. C., S. Kemp, Z. Zoumot, G. Z. Yang, A. Darzi, and P. L. Shah. An unusual case of haemoptysis. Thorax 65(309):353, 2010.

    Google Scholar 

  17. 17.

    Peirs, J., D. Reynaerts, and H. Van Brussel. A miniature manipulator for integration in a self-propelling endoscope. Sensors Actuators A 34:343–349, 2001.

    Article  Google Scholar 

  18. 18.

    Pohl, H., T. Rosch, M. Vieth, M. Koch, V. Becker, M. Anders, A. C. Khalifa, and A. Meining. Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett’s oesophagus. Gut 57:1648–1653, 2008.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Rosa, B., B. Herman, J. Szewczyk, B. Gayet, and G. Morel. Laparoscopic optical biopsies: in vivo robotized mosaicing with probe-based confocal endomicroscopy. In Proceedings of IROS’2011, an Francisco, California, pp. 25–30, 2011.

  20. 20.

    Schwartz, G. F., U. Veronesi, K. B. Clough, et al. Consensus conference on breast conservation. J. Am. Coll. Surg. 203:198–207, 2006.

    Article  PubMed  Google Scholar 

  21. 21.

    Shang, J., D. Noonan, C. Payne, J. Clark, M. Sodergren, A. Darzi, and G.Z. Yang. An articulated universal joint based flexible access robot for minimally invasive surgery. In: Proceedings of the IEEE International Conference on Robotics Automation, pp. 1147–1152, 2011.

  22. 22.

    Singletary, S. E. Surgical margins in patients with early-stage breast cancer treated with breast conservation therapy. Am. J. Surg. 184:383–393, 2002.

    Article  PubMed  Google Scholar 

  23. 23.

    Tilli, M. T., M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth. Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy. J. Biomed. Opt. 12:051901, 2007.

    Article  PubMed  Google Scholar 

  24. 24.

    Vercauteren, T., A. Meining, F. Lacombe, and A. Perchant. Real time autonomous video image registration for endomicroscopy: fighting the compromises. Biomed. Opt. (BiOS) 2008:68610C, 2008.

    Google Scholar 

  25. 25.

    Vercauteren, T., A. Perchant, G. Malandain, X. Pennec, and N. Ayache. Robust mosaicing with correction of motion distortions and tissue deformation for in vivo fibered microscopy. Med. Image Anal. 10(5):673–692, 2006.

    Article  PubMed  Google Scholar 

  26. 26.

    Vercauteren, T., A. Perchant, X. Pennec, and N. Ayache. Mosaicing of confocal microscopic in vivo soft tissue video sequences. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2005, pp. 753–760, 2005.

  27. 27.

    Xu, M., and L. V. Wang. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77:041101, 2006.

    Article  Google Scholar 

  28. 28.

    Yamashita, H., D. Kim, N. Hata, T. Dohi. Multi-slider linkage mechanism for endoscopic forceps manipulator. In: Proceedings of the IEEE/RSJ International Conference on Intelligence Robots System, pp. 2577–2582, 2003.

  29. 29.

    Yamashita, H., K. Matsumiya, K. Masamune, H. Liao, T. Chiba, and T. Dohi. Miniature bending manipulator for fetoscopic intrauterine laser therapy in twin-to-twin transfusion syndrome. Surg. Endosc. 22(2):430–435, 2007.

    Article  Google Scholar 

  30. 30.

    Zuo, S., M. Hughes, C. Seneci, T. P. Chang, and G. Z. Yang. Towards intraoperative breast endomicroscopy with a novel surface scanning device. IEEE Trans. Biomed. Eng. 2015. doi:10.1109/TBME.2015.2455597.

    Google Scholar 

  31. 31.

    Zuo, S., K. Iijima, T. Tokumiya, and K. Masamune. Variable stiffness outer sheath with “Dragon skin” structure and negative pneumatic shape-locking. Int. J. Comput. Assist. Radiol. Surg. 9(5):857–865, 2014.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Daniel R Leff and Vyas Khushi for providing the breast tissue and discussion for ex vivo experiments, and to Petros Giataganas for discussions with mechanical design. This work was supported by EPSRC grant EP/IO27769/1: SMART Endomicroscopy.

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Siyang Zuo.

Additional information

Associate Editor Xiaoxiang Zheng oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuo, S., Hughes, M. & Yang, GZ. Novel Balloon Surface Scanning Device for Intraoperative Breast Endomicroscopy. Ann Biomed Eng 44, 2313–2326 (2016). https://doi.org/10.1007/s10439-015-1493-2

Download citation

Keywords

  • Breast conserving surgery
  • Confocal endomicroscopy
  • Image mosaicing
  • Mechanical design
  • Surgical robot