Annals of Biomedical Engineering

, Volume 44, Issue 5, pp 1646–1655 | Cite as

A Pressure Plate-Based Method for the Automatic Assessment of Foot Strike Patterns During Running

  • Alessandro Santuz
  • Antonis Ekizos
  • Adamantios Arampatzis


The foot strike pattern (FSP, description of how the foot touches the ground at impact) is recognized to be a predictor of both performance and injury risk. The objective of the current investigation was to validate an original foot strike pattern assessment technique based on the numerical analysis of foot pressure distribution. We analyzed the strike patterns during running of 145 healthy men and women (85 male, 60 female). The participants ran on a treadmill with integrated pressure plate at three different speeds: preferred (shod and barefoot 2.8 ± 0.4 m/s), faster (shod 3.5 ± 0.6 m/s) and slower (shod 2.3 ± 0.3 m/s). A custom-designed algorithm allowed the automatic footprint recognition and FSP evaluation. Incomplete footprints were simultaneously identified and corrected from the software itself. The widely used technique of analyzing high-speed video recordings was checked for its reliability and has been used to validate the numerical technique. The automatic numerical approach showed a good conformity with the reference video-based technique (ICC = 0.93, p < 0.01). The great improvement in data throughput and the increased completeness of results allow the use of this software as a powerful feedback tool in a simple experimental setup.


Locomotion Gait analysis Foot Forefoot Humans 



We are grateful to Arno Schroll for the precious suggestions in matter of statistics and to Sebastian Bohm, PhD and Falk Mersmann for the great help in collecting the participants.


  1. 1.
    Almonroeder, T., J. D. Willson, and T. W. Kernozek. The effect of foot strike pattern on achilles tendon load during running. Ann. Biomed. Eng. 41:1758–1766, 2013.CrossRefPubMedGoogle Scholar
  2. 2.
    Altman, A. R., and I. S. Davis. A kinematic method for footstrike pattern detection in barefoot and shod runners. Gait Posture 35:298–300, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beely, F. Zur Mechanik des Stehens. Ueber die Bedeutung des Fussgewölbes beim Stehen. Arch. für Klin. Chir. 27:457–471, 1882.Google Scholar
  4. 4.
    Bennell, K. L., S. A. Malcolm, S. A. Thomas, P. R. Ebeling, P. R. McCrory, J. D. Wark, and P. D. Brukner. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin. J. Sport Med. 5:229–235, 1995.CrossRefPubMedGoogle Scholar
  5. 5.
    Bertelsen, M. L., J. F. Jensen, M. H. Nielsen, R. O. Nielsen, and S. Rasmussen. Footstrike patterns among novice runners wearing a conventional, neutral running shoe. Gait Posture 38:354–356, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    Borg, G. A. V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14:377–381, 1982.PubMedGoogle Scholar
  7. 7.
    Boyer, E. R., and T. R. Derrick. Select injury-related variables are affected by stride length and foot strike style during running. Am. J. Sports Med. 43:2310–2317, 2015.CrossRefPubMedGoogle Scholar
  8. 8.
    Boyer, E. R., B. D. Rooney, and T. R. Derrick. Rearfoot and midfoot or forefoot impacts in habitually shod runners. Med. Sci. Sports Exerc. 46:1384–1391, 2014.CrossRefPubMedGoogle Scholar
  9. 9.
    Bramble, D. M., and D. E. Lieberman. Endurance running and the evolution of Homo. Nature 432:345–352, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Braunstein, B., A. Arampatzis, P. Eysel, and G.-P. Brüggemann. Footwear affects the gearing at the ankle and knee joints during running. J. Biomech. 43:2120–2125, 2010.CrossRefPubMedGoogle Scholar
  11. 11.
    Burfoot, A. The history of the marathon: 1976–present. Sport. Med. 37:284–287, 2007.CrossRefGoogle Scholar
  12. 12.
    Cavagna, G. A., L. Komarek, and S. Mazzoleni. The mechanics of sprint running. J. Neurosci. 217:709–721, 1971.Google Scholar
  13. 13.
    Cavanagh, P. R., and M. A. Lafortune. Ground reaction forces in distance running. J. Biomech. 13:397–406, 1980.CrossRefPubMedGoogle Scholar
  14. 14.
    Chambon, N., N. Delattre, N. Guéguen, E. Berton, and G. Rao. Is midsole thickness a key parameter for the running pattern? Gait Posture 40(1):58–63, 2014.CrossRefPubMedGoogle Scholar
  15. 15.
    Daoud, A. I., G. J. Geissler, F. Wang, J. Saretsky, Y. A. Daoud, and D. E. Lieberman. Foot strike and injury rates in endurance runners: a retrospective study. Med. Sci. Sports Exerc. 44:1325–1334, 2012.CrossRefPubMedGoogle Scholar
  16. 16.
    De Almeida, M. O., B. T. Saragiotto, T. P. Yamato, and A. D. Lopes. Is the rearfoot pattern the most frequently foot strike pattern among recreational shod distance runners? Phys. Ther. Sport 16(1):29–33, 2015.CrossRefPubMedGoogle Scholar
  17. 17.
    Di Michele, R., and F. Merni. The concurrent effects of strike pattern and ground-contact time on running economy. J. Sci. Med. Sport 17:414–418, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Elftman, H. A cinematic study of the distribution of pressure in the human foot. Anat. Rec. 59:481–491, 1934.CrossRefGoogle Scholar
  19. 19.
    Fletcher, J. R., S. P. Esau, and B. R. MacIntosh. Economy of running: beyond the measurement of oxygen uptake. J. Appl. Physiol. 107:1918–1922, 2009.CrossRefPubMedGoogle Scholar
  20. 20.
    Giandolini, M., T. Poupard, P. Gimenez, N. Horvais, G. Y. Millet, J.-B. Morin, and P. Samozino. A simple field method to identify foot strike pattern during running. J. Biomech. 47:1588–1593, 2014.CrossRefPubMedGoogle Scholar
  21. 21.
    Gruber, A. H., B. R. Umberger, B. Braun, and J. Hamill. Economy and rate of carbohydrate oxidation during running with rearfoot and forefoot strike patterns. J. Appl. Physiol. 115:194–201, 2013.CrossRefPubMedGoogle Scholar
  22. 22.
    Hamill, J., and A. H. Gruber. Running injuries: forefoot versus rearfoot and barefoot versus shod: a biomechanist’s perspective. 2012.Google Scholar
  23. 23.
    Hasegawa, H., T. Yamauchi, and W. J. Kraemer. Foot strike patterns of runners at the 15-km point during an elite-level half marathon. J. Strength Cond. Res. 21:888–893, 2007.PubMedGoogle Scholar
  24. 24.
    Hatala, K. G., H. L. Dingwall, R. E. Wunderlich, and B. G. Richmond. Variation in foot strike patterns during running among habitually barefoot populations. PLoS One 8:e52548, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kasmer, M. E., X.-C. Liu, K. G. Roberts, and J. M. Valadao. Foot-strike pattern and performance in a marathon. Int. J. Sports Physiol. Perform. 8:286–292, 2013.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Kernozek, T. W., S. Meardon, and C. N. Vannatta. In-shoe loading in rearfoot and non-rearfoot strikers during running using minimalist footwear. Int. J. Sports Med. 35(13):1112–1117, 2014.CrossRefPubMedGoogle Scholar
  27. 27.
    Larson, P., E. Higgins, J. Kaminski, T. Decker, J. Preble, D. Lyons, K. McIntyre, and A. Normile. Foot strike patterns of recreational and sub-elite runners in a long-distance road race. J. Sports Sci. 29:1665–1673, 2011.CrossRefPubMedGoogle Scholar
  28. 28.
    Laughton, C. A., I. M. Davis, and J. Hamill. Effect of strike pattern and orthotic intervention on tibial shock during running. J. Appl. Biomech. 19:153–168, 2003.Google Scholar
  29. 29.
    Lees, A., and J. Bouracier. The longitudinal variability of ground reaction forces in experienced and inexperienced runners. Ergonomics 37:197–206, 1994.CrossRefPubMedGoogle Scholar
  30. 30.
    Lieberman, D. E., M. Venkadesan, W. A. Werbel, A. I. Daoud, S. D’Andrea, I. S. Davis, R. O. Mang’eni, and Y. Pitsiladis. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 463:531–535, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Logan, S., I. Hunter, J. T. Hopkins, J. B. Feland, and A. C. Parcell. Ground reaction force differences between running shoes, racing flats, and distance spikes in runners. J. Sport. Sci. Med. 9:147–153, 2010.Google Scholar
  32. 32.
    Lun, V., W. H. Meeuwisse, P. Stergiou, and D. Stefanyshyn. Relation between running injury and static lower limb alignment in recreational runners. Br. J. Sports Med. 38:576–580, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mann, R., L. Malisoux, R. Brunner, P. Gette, A. Urhausen, A. Statham, K. Meijer, and D. Theisen. Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running. Gait Posture 39:455–459, 2014.CrossRefPubMedGoogle Scholar
  34. 34.
    McCallion, C., B. Donne, N. Fleming, and B. Blanksby. Acute differences in foot strike and spatiotemporal variables for shod, barefoot or minimalist male runners. J. Sport. Sci. Med. 13:280–286, 2014.Google Scholar
  35. 35.
    Milner, C. E., R. Ferber, C. D. Pollard, J. Hamill, and I. S. Davis. Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sports Exerc. 38:323–328, 2006.CrossRefPubMedGoogle Scholar
  36. 36.
    Momburg, F. Der Gang des Menschen und die Fussgeschwulst. Berlin: Hirschwald, 1908; (87 pp).Google Scholar
  37. 37.
    Perl, D. P., A. I. Daoud, and D. E. Lieberman. Effects of footwear and strike type on running economy. Med. Sci. Sports Exerc. 44:1335–1343, 2012.CrossRefPubMedGoogle Scholar
  38. 38.
    Pohl, M. B., and J. G. Buckley. Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin. Biomech. 23:334–341, 2008.CrossRefGoogle Scholar
  39. 39.
    Pohl, M. B., D. R. Mullineaux, C. E. Milner, J. Hamill, and I. S. Davis. Biomechanical predictors of retrospective tibial stress fractures in runners. J. Biomech. 41:1160–1165, 2008.CrossRefPubMedGoogle Scholar
  40. 40.
    Riley, P. O., J. Dicharry, J. Franz, U. Della Croce, R. P. Wilder, and D. C. Kerrigan. A kinematics and kinetic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 40:1093–1100, 2008.CrossRefPubMedGoogle Scholar
  41. 41.
    Scholten, S. D., N. Stergiou, A. Hreljac, J. Houser, D. Blanke, and L. R. Alberts. Foot strike patterns after obstacle clearance during running. Med. Sci. Sports Exerc. 34:123–129, 2002.CrossRefPubMedGoogle Scholar
  42. 42.
    Squadrone, R., and C. Gallozzi. Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. J. Sports Med. Phys. Fitness 49(1):6–13, 2009.PubMedGoogle Scholar
  43. 43.
    Treutwein, B. Adaptive psychophysical procedures. Vis Res. 35:2503–2522, 1995.CrossRefPubMedGoogle Scholar
  44. 44.
    White, S. C., L. A. Gilchrist, and K. A. Christina. Within-day accommodation effects on vertical reaction forces for treadmill running. J. Appl. Biomech. 18:74–82, 2002.Google Scholar
  45. 45.
    Williams, D. S., I. S. McClay, and K. T. Manal. Lower extremity mechanics in runners with a converted forefoot strike pattern. J. Appl. Biomech. 16:210–218, 2000.Google Scholar
  46. 46.
    Zifchock, R. A., I. Davis, and J. Hamill. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 39:2792–2797, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Alessandro Santuz
    • 1
    • 2
  • Antonis Ekizos
    • 1
    • 2
  • Adamantios Arampatzis
    • 1
    • 2
  1. 1.Department of Training and Movement SciencesHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Berlin School of Movement ScienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations