Biomechanical Challenges to Polymeric Biodegradable Stents

Abstract

Biodegradable implants have demonstrated clinical success in simple applications (e.g., absorbable sutures) and have shown great potential in many other areas of interventional medicine, such as localized drug delivery, engineered tissue scaffolding, and structural implants. For endovascular stenting and musculoskeletal applications, they can serve as temporary mechanical support that provides a smooth stress-transfer from the degradable implant to the healing tissue. However, for more complex device geometries, in vivo environments, and evolving load-bearing functions, such as required for vascular stents, there are considerable challenges associated with the use of biodegradable materials. A biodegradable stent must restore blood flow and provide support for a predictable appropriate period to facilitate artery healing, and subsequently, fail safely and be absorbed in a controllable manner. Biodegradable polymers are typically weaker than metals currently employed to construct stents, so it is difficult to ensure sufficient strength to keep the artery open and alleviate symptoms acutely while keeping other design parameters within clinically acceptable ranges. These design challenges are serious, given the general lack of understanding of biodegradable polymer behavior and evolution in intimal operating conditions. The modus operandi is mainly empirical and relies heavily on trial-and-error methodologies burdened by difficult, resource-expensive, and time-consuming experiments. We are striving for theoretical advancements systematizing the empirical knowledge into rational frameworks that could be cast into in silico tools for simulation and product development optimization. These challenges are evident when one considers that there are no biodegradable stents on the US market despite more than 30 years of development efforts (and currently only a couple with CE mark). This review summarizes previous efforts at implementing biodegradable stents, discusses the specific challenges involved, and presents recently developed material-modeling frameworks that can benefit this exciting field.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1.

    Agrawal, C. M., and H. G. Clark. Deformation characteristics of a bioabsorbable intravascular stent. Invest. Radiol. 27:1020–1024, 1992.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Agrawal, C. M., K. F. Haas, D. A. Leopold, and H. G. Clark. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Agrawal, C. M., and R. B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55:141–150, 2001.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Ahn, Y. K., M. H. Jeong, J. W. Kim, S. H. Kim, J. H. Cho, J. G. Cho, C. S. Park, S. W. Juhng, J. C. Park, and J. C. Kang. Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter Cardiovasc. Interv. 48:324–330, 1999.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Arshady, R. Biodegradable Polymers. London: Citus Books, 2003.

    Google Scholar 

  6. 6.

    Babapulle, M. N., and M. J. Eisenberg. Coated stents for the prevention of restenosis: part II. Circulation 106:2859–2866, 2002.

    PubMed  Article  Google Scholar 

  7. 7.

    Beatty, M. F., and S. Krishnaswamy. A theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids 48:1931–1965, 2000.

    Article  Google Scholar 

  8. 8.

    Bedoya, J., C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.

    PubMed  Article  Google Scholar 

  9. 9.

    Berglund, J., Y. Guo, and J. N. Wilcox. Challenges related to development of bioabsorbable vascular stents. EuroIntervention 5:F72–F79, 2009.

    PubMed  Article  Google Scholar 

  10. 10.

    Bergström, J. S., and M. C. Boyce. Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46:931–954, 1998.

    Article  Google Scholar 

  11. 11.

    Bernstein, B., and A. Shokooh. The stress clock function in viscoelasticity. J. Rheol. 24:189–211, 1980.

    CAS  Article  Google Scholar 

  12. 12.

    Bier, J. D., P. Zalesky, S. T. Li, H. Sasken, and D. O. Williams. A new bioabsorbable intravascular stent: in vitro assessment of hemodynamic and morphometric characteristics. J Interv Cardiol 5:187–194, 1992.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bourantas, C. V., Y. Zhang, V. Farooq, H. M. Garcia-Garcia, Y. Onuma, and P. W. Serruys. Bioresorbable scaffolds: current evidence and ongoing clinical trials. Curr. Cardiol. Rep. 14:626–634, 2012.

    PubMed Central  PubMed  Article  Google Scholar 

  14. 14.

    Bunger, C. M., N. Grabow, K. Sternberg, M. Goosmann, K. P. Schmitz, H. J. Kreutzer, H. Ince, S. Kische, C. A. Nienaber, D. P. Martin, S. F. Williams, E. Klar, and W. Schareck. A biodegradable stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J. Endovasc. Ther. 14:725–733, 2007.

    PubMed  Article  Google Scholar 

  15. 15.

    Bunger, C. M., N. Grabow, K. Sternberg, C. Kroger, L. Ketner, K. P. Schmitz, H. J. Kreutzer, H. Ince, C. A. Nienaber, E. Klar, and W. Schareck. Sirolimus-eluting biodegradable poly-l-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries. J. Surg. Res. 139:77–82, 2007.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Chu, C. C. Surgical research, recent developments. Proc. First Annu. Sci. Sess. Acad. Surg. Res. Edited by C. W. Hall. Pergamon Press, 1985, pp. 111–115.

  17. 17.

    Chung, W. S., C. S. Park, K. B. Seung, P. J. Kim, J. M. Lee, B. K. Koo, Y. S. Jang, J. Y. Yang, J. H. Yoon, D. I. Kim, Y. W. Yoon, J. S. Park, Y. H. Cho, and S. J. Park. The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int. J. Cardiol. 125:325–331, 2008.

    PubMed  Article  Google Scholar 

  18. 18.

    Coleman, B. D., and M. E. Gurtin. Thermodynamics with internal state variables. J. Chem. Phys. 47:597–613, 1967.

    CAS  Article  Google Scholar 

  19. 19.

    Colombo, A., and E. Karvouni. Biodegradable stents: “fulfilling the mission and stepping away”. Circulation 102:371–373, 2000.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Cottone, R. J., G. L. Thatcher, S. P. Parker, L. Hanks, D. A. Kujawa, S. M. Rowland, M. Costa, R. S. Schwartz, and Y. Onuma. OrbusNeich fully absorbable coronary stent platform incorporating dual partitioned coatings. EuroIntervention 5:F65–F71, 2009.

    PubMed  Article  Google Scholar 

  21. 21.

    De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken, J. Vandorpe, P. N. Lan, E. Schacht, H. De Geest, and J. Piessens. Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. Atherosclerosis 114:105–114, 1995.

    PubMed  Article  Google Scholar 

  22. 22.

    De Scheerder, I. K., K. L. Wilczek, E. V. Verbeken, J. Vandorpe, P. N. Lan, E. Schacht, J. Piessens, and H. De Geest. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc. Intervent. Radiol. 18:227–232, 1995.

    PubMed  Article  Google Scholar 

  23. 23.

    Erbel, R., C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, C. Ilsley, D. Bose, J. Koolen, T. F. Luscher, N. Weissman, and R. Waksman. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875, 2007.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Farb, A., D. K. Weber, F. D. Kolodgie, A. P. Burke, and R. Virmani. Morphological predictors of restenosis after coronary stenting in humans. Circulation 105:2974–2980, 2002.

    PubMed  Article  Google Scholar 

  25. 25.

    Felix, C., B. Everaert, R. Diletti, N. Van Mieghem, J. Daemen, M. Valgimigli, P. P. de Jaegere, F. Zijlstra, E. Regar, C. Simsek, Y. Onuma, and R. J. van Geuns. Current status of clinically available bioresorbable scaffolds in percutaneous coronary interventions. Neth. Heart J. 23:153–160, 2015.

    PubMed Central  PubMed  Article  Google Scholar 

  26. 26.

    Grabow, N., C. M. Bunger, S. Kischkel, J. H. Timmermann, T. Reske, D. P. Martin, S. F. Williams, W. Schareck, K. Sternberg, and K. P. Schmitz. Development of a sirolimus-eluting poly (l-lactide)/poly(4-hydroxybutyrate) absorbable stent for peripheral vascular intervention. Biomed. Tech. (Berl) 58:429–437, 2013.

    CAS  Article  Google Scholar 

  27. 27.

    Grabow, N., C. M. Bunger, C. Schultze, K. Schmohl, D. P. Martin, S. F. Williams, K. Sternberg, and K. P. Schmitz. A biodegradable slotted tube stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann. Biomed. Eng. 35:2031–2038, 2007.

    PubMed  Article  Google Scholar 

  28. 28.

    Grabow, N., H. Martin, and K. P. Schmitz. The impact of material characteristics on the mechanical properties of a poly(l-lactide) coronary stent. Biomed. Tech. (Berl) 47:503–505, 2002.

    Article  Google Scholar 

  29. 29.

    Grabow, N., M. Schlun, K. Sternberg, N. Hakansson, S. Kramer, and K. P. Schmitz. Mechanical properties of laser cut poly(l-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 127:25–31, 2005.

    PubMed  Article  Google Scholar 

  30. 30.

    Hämäläinen, M., R. Nieminen, I. Uurto, J.-P. Salenius, M. Kellomäki, J. Mikkonen, A. Kotsar, T. Isotalo, T. T. Lj, M. Talja, and E. Moilanen. Dexamethasone-eluting vascular stents. Basic Clin. Pharmacol. 112:296–301, 2013.

    Article  CAS  Google Scholar 

  31. 31.

    Hayman, D., C. Bergerson, S. Miller, M. Moreno, and J. E. Moore. The effect of static and dynamic loading on degradation of PLLA stent fibers. J. Biomech. Eng. 136:081006, 2014.

    Article  Google Scholar 

  32. 32.

    Hietala, E. M., U. S. Salminen, A. Stahls, T. Valimaa, P. Maasilta, P. Tormala, M. S. Nieminen, and A. L. Harjula. Biodegradation of the copolymeric polylactide stent. Long-term follow-up in a rabbit aorta model. J. Vasc. Res. 38:361–369, 2001.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Holmes, D. R., A. R. Camrud, M. A. Jorgenson, W. D. Edwards, and R. S. Schwartz. Polymeric stenting in the porcine coronary artery model: differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents. J. Am. Coll. Cardiol. 24:525–531, 1994.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Horgan, C. O., R. W. Ogden, and G. Saccomandi. A theory of stress softening of elastomers based on finite chain extensibility. Proc. R. Soc. Lond. A 460:1737–1754, 2004.

    CAS  Article  Google Scholar 

  35. 35.

    Horgan, C. O., and G. Saccomandi. Constitutive modelling of rubber-like and biological materials with limiting chain extensibility. Math. Mech. Solids 7:353–371, 2002.

    Article  Google Scholar 

  36. 36.

    Jabara, R., L. Pendyala, S. Geva, J. Chen, N. Chronos, and K. Robinson. Novel fully bioabsorbable salicylate-based sirolimus-eluting stent. EuroIntervention 5:F58–F64, 2009.

    PubMed  Article  Google Scholar 

  37. 37.

    Karanasos, A., C. Simsek, M. Gnanadesigan, N. S. van Ditzhuijzen, R. Freire, J. Dijkstra, S. Tu, N. Van Mieghem, G. van Soest, P. de Jaegere, P. W. Serruys, F. Zijlstra, R. J. van Geuns, and E. Regar. OCT assessment of the long-term vascular healing response 5 years after everolimus-eluting bioresorbable vascular scaffold. J. Am. Coll. Cardiol. 64:2343–2356, 2014.

    PubMed  Article  Google Scholar 

  38. 38.

    Kastrati, A., D. Hall, and A. Schomig. Long-term outcome after coronary stenting. Curr. Control. Trials Cardiovasc. Med. 1:48–54, 2000.

    PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Katti, D. S., S. Lakshmi, R. Langer, and C. T. Laurencin. Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev. 54:933–961, 2002.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Kimura, T., H. Yokoi, Y. Nakagawa, T. Tamura, S. Kaburagi, Y. Sawada, Y. Sato, H. Yokoi, N. Hamasaki, H. Nosaka, et al. Three-year follow-up after implantation of metallic coronary-artery stents. N. Engl. J. Med. 334:561–566, 1996.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Kitabata, H., R. Waksman, and B. Warnack. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovasc. Revasc. Med. 15:109–116, 2014.

    PubMed  Article  Google Scholar 

  42. 42.

    Knowles, J. K. Finite anti-plane shear field near tip of a crack for a class of incompressible elastic solids. Int. J. Fract. 13:611–639, 1977.

    Article  Google Scholar 

  43. 43.

    Kolachalama, V. B., A. R. Tzafriri, D. Y. Arifin, and E. R. Edelman. Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control Release 133:24–30, 2009.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  44. 44.

    Labinaz, M., J. P. Zidar, R. S. Stack, and H. R. Phillips. Biodegradable stents: the future of interventional cardiology? J. Interv. Cardiol. 8:395–405, 1995.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Lam, C. X., M. M. Savalani, S. H. Teoh, and D. W. Hutmacher. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed. Mater. 3:034108, 2008.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Langer, R. Drug delivery and targeting. Nature 392:5–10, 1998.

    CAS  PubMed  Google Scholar 

  47. 47.

    Laufman, H., and T. Rubel. Synthetic absorable sutures. Surg. Gynecol. Obstet. 145:597–608, 1977.

    CAS  PubMed  Google Scholar 

  48. 48.

    Lemaître, J. A Course on Damage Mechanics. Berlin: Springer, 1992.

    Google Scholar 

  49. 49.

    Lincoff, A. M., J. G. Furst, S. G. Ellis, R. J. Tuch, and E. J. Topol. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol. 29:808–816, 1997.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Luo, Q., X. Liu, Z. Li, C. Huang, W. Zhang, J. Meng, Z. Chang, and Z. Hua. Degradation model of bioabsorbable cardiovascular stents. PLoS ONE 9:e110278, 2014.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  51. 51.

    Maeng, M., L. O. Jensen, E. Falk, H. R. Andersen, and L. Thuesen. Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents. Heart 95:241–246, 2009.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Mikkonen, J., I. Uurto, T. Isotalo, A. Kotsar, T. L. J. Tammela, M. Talja, J. P. Salenius, P. Törmälä, and M. Kellomäki. Drug-eluting bioabsorbable stents—an in vitro study. Acta Biomater. 5:2894–2900, 2009.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Miller, N. D., and D. F. Williams. The invivo and invitro degradation of poly(glycolic acid) suture material as a function of applied strain. Biomaterials 5:365–368, 1984.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Moore, Jr., J. E., J. S. Soares, and K. R. Rajagopal. Biodegradable stents: biomechanical modeling challenges and opportunities. Cardiovasc. Eng. Technol. 1:52–65, 2010.

    Article  Google Scholar 

  55. 55.

    Murphy, J. G., R. S. Schwartz, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, and D. R. Holmes, Jr. Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene terephthalate stents. Circulation 86:1596–1604, 1992.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Nishio, S., K. Kosuga, K. Igaki, M. Okada, E. Kyo, T. Tsuji, E. Takeuchi, Y. Inuzuka, S. Takeda, T. Hata, Y. Takeuchi, Y. Kawada, T. Harita, J. Seki, S. Akamatsu, S. Hasegawa, N. Bruining, S. Brugaletta, S. de Winter, T. Muramatsu, Y. Onuma, P. W. Serruys, and S. Ikeguchi. Long-term (>10 years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents. Circulation 125:2343–2353, 2012.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Nuutinen, J. P., C. Clerc, R. Reinikainen, and P. Tormala. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J. Biomater. Sci. Polym. Ed. 14:255–266, 2003.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Nuutinen, J. P., C. Clerc, and P. Tormala. Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J. Biomater. Sci. Polym. Ed. 14:677–687, 2003.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Ogden, R. W., and D. G. Roxburgh. A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455:2861–2877, 1999.

    Article  Google Scholar 

  60. 60.

    Onuma, Y., D. Dudek, L. Thuesen, M. Webster, K. Nieman, H. M. Garcia-Garcia, J. A. Ormiston, and P. W. Serruys. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc. Interv. 6:999–1009, 2013.

    PubMed  Article  Google Scholar 

  61. 61.

    Ormiston, J. A., P. W. Serruys, Y. Onuma, R. J. van Geuns, B. de Bruyne, D. Dudek, L. Thuesen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, R. Rapoza, and H. M. Garcia-Garcia. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ. Cardiovasc. Interv. 5:620–632, 2012.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Ormiston, J. A., P. W. Serruys, E. Regar, D. Dudek, L. Thuesen, M. W. Webster, Y. Onuma, H. M. Garcia-Garcia, R. McGreevy, and S. Veldhof. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 371:899–907, 2008.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Ormiston, J. A., M. W. Webster, and G. Armstrong. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-l-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc. Interv. 69:128–131, 2007.

    PubMed  Article  Google Scholar 

  64. 64.

    Palminteri, E. Stents and urethral strictures: a lesson learned? Eur. Urol. 54:498–500, 2008.

    PubMed  Article  Google Scholar 

  65. 65.

    Peng, T., P. Gibula, K.-D. Yao, and M. F. A. Goosen. Role of polymers in improving the results of stenting in coronary arteries. Biomaterials 17:685–694, 1996.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Pietrzak, W. S., D. R. Sarver, and M. L. Verstynen. Bioabsorbable polymer science for the practicing surgeon. J. Craniofac. Surg. 8:87–91, 1997.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Pietrzak, W. S., M. L. Verstynen, and D. R. Sarver. Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon. J. Craniofac. Surg. 8:92–96, 1997.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Piskin, E., A. Tuncel, A. Denizli, E. B. Denkbas, H. Ayhan, H. Cicek, and K. T. Xu. Diagnostic Biosensor Polymers Vol. 556 Acs Symp. Ser. edited by A. M. Usmani and N. Akmal. Amer Chemical Soc, 1994, pp. 222–237.

  69. 69.

    Post, M. J., A. N. de Graaf-Bos, H. G. van Zanten, P. G. de Groot, J. J. Sixma, and C. Borst. Thrombogenicity of the human arterial wall after interventional thermal injury. J. Vasc. Res. 33:156–163, 1996.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Rajagopal, K. R., and A. S. Wineman. A note on viscoelastic materials that can age. Int. J. Nonlin. Mech. 39:1547–1554, 2004.

    Article  Google Scholar 

  71. 71.

    Rajasubramanian, G., R. S. Meidell, C. Landau, M. L. Dollar, D. B. Holt, J. E. Willard, M. D. Prager, and R. C. Eberhart. Fabrication of resorbable microporous intravascular stents for gene therapy applications. ASAIO J. 40:M584–M589, 1994.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Ramcharitar, S., and P. W. Serruys. Fully biodegradable coronary stents: progress to date. Am. J. Cardiovasc. Drugs 8:305–314, 2008.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Braunlich, M. Ulrich, G. Biamino, and A. Schmidt. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 45:312–315, 2005.

    PubMed  Article  Google Scholar 

  74. 74.

    Serruys, P. W., H. E. Luijten, K. J. Beatt, R. Geuskens, P. J. de Feyter, M. van den Brand, J. H. Reiber, H. J. ten Katen, G. A. van Es, and P. G. Hugenholtz. Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77:361–371, 1988.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Serruys, P. W., Y. Onuma, D. Dudek, P. C. Smits, J. Koolen, B. Chevalier, B. de Bruyne, L. Thuesen, D. McClean, R. J. van Geuns, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, K. Sudhir, H. M. Garcia-Garcia, and J. A. Ormiston. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J. Am. Coll. Cardiol. 58:1578–1588, 2011.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Serruys, P. W., Y. Onuma, H. M. Garcia-Garcia, T. Muramatsu, R. J. van Geuns, B. de Bruyne, D. Dudek, L. Thuesen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, R. Rapoza, and J. A. Ormiston. Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 9:1271–1284, 2014.

    PubMed  Article  Google Scholar 

  77. 77.

    Serruys, P. W., J. A. Ormiston, Y. Onuma, E. Regar, N. Gonzalo, H. M. Garcia-Garcia, K. Nieman, N. Bruining, C. Dorange, K. Miquel-Hebert, S. Veldhof, M. Webster, L. Thuesen, and D. Dudek. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373:897–910, 2009.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Simo, J. C., and J. W. Ju. Strain-based and stress-based continuum damage models. 1. Formulation. Int. J. Solids Struct. 23:821–840, 1987.

    Article  Google Scholar 

  79. 79.

    Soares, J. Diffusion of a fluid through a spherical elastic solid undergoing large deformations. Int. J. Eng. Sci. 47:50–63, 2009.

    Article  Google Scholar 

  80. 80.

    Soares, J. S., J. E. Moore Jr., and K. R. Rajagopal. Modeling of biological materials. edited by F. Mollica, L. Preziosi, and K. R. Rajagopal. Birkhauser, 2007, pp. 125–177.

  81. 81.

    Soares, J. S., J. E. Moore, Jr., and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54:295, 2008.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Soares, J. S., J. E. Moore, Jr., and K. R. Rajagopal. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents. J. Med. Devices 4:041007, 2010.

    Article  Google Scholar 

  83. 83.

    Soares, J. S., K. R. Rajagopal, and J. E. Moore, Jr. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanobiol. 9:177–186, 2010.

    PubMed Central  PubMed  Article  Google Scholar 

  84. 84.

    Soares, J. S., and P. Zunino. A mixture model for water uptake, degradation, erosion and drug release from polydisperse polymeric networks. Biomaterials 31(11):3032–3042, 2010.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Stack, R. S., R. M. Califf, H. R. Phillips, D. B. Pryor, P. J. Quigley, R. P. Bauman, J. E. Tcheng, and J. C. Greenfield, Jr. Interventional cardiac catheterization at Duke Medical Center. Am. J. Cardiol. 62:3F–24F, 1988.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Sternberg, K., N. Grabow, S. Petersen, W. Weitschies, C. Harder, H. Ince, H. K. Kroemer, and K. P. Schmitz. Advances in coronary stent technology–active drug-loaded stent surfaces for prevention of restenosis and improvement of biocompatibility. Curr. Pharm. Biotechnol. 14:76–90, 2013.

    CAS  PubMed  Google Scholar 

  87. 87.

    Stouffer, D. C., and A. M. Strauss. Continuum theory of degrading elastic solids with application to stress-corrosion. Int. J. Eng. Sci. 14:915–924, 1976.

    Article  Google Scholar 

  88. 88.

    Stouffer, D. C., and A. M. Strauss. Theory of material divagation. Int. J. Eng. Sci. 16:1019–1028, 1978.

    Article  Google Scholar 

  89. 89.

    Stouffer, D. C., and A. S. Wineman. Linear viscoelastic materials with environmental dependent properties. Int. J. Eng. Sci. 9:193–212, 1971.

    Article  Google Scholar 

  90. 90.

    Stouffer, D. C., and A. S. Wineman. Constitutive representation for linear aging, environmental-dependent viscoelastic materials. Acta Mech. 13:31–53, 1972.

    Article  Google Scholar 

  91. 91.

    Strandberg, E., J. Zeltinger, D. G. Schulz, and G. L. Kaluza. Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries. Circ. Cardiovasc. Interv. 5:39–46, 2012.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Su, S. H., R. Y. Chao, C. L. Landau, K. D. Nelson, R. B. Timmons, R. S. Meidell, and R. C. Eberhart. Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng. 31:667–677, 2003.

    PubMed  Article  Google Scholar 

  93. 93.

    Suggs, L. J., R. S. Krishnan, C. A. Garcia, S. J. Peter, J. M. Anderson, and A. G. Mikos. In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 42:312–320, 1998.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Tamada, J. A., and R. Langer. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. USA 90:552–556, 1993.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  95. 95.

    Tamai, H., K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404, 2000.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Tamai, H., K. Igaki, T. Tsuji, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, S. Motohara, H. Uehata, and E. Takeuchi. A biodegradable poly-l-lactic acid coronary stent in the porcine coronary artery. J. Interv. Cardiol. 12:443–449, 1999.

    Article  Google Scholar 

  97. 97.

    Tammela, T. L., and M. Talja. Biodegradable urethral stents. BJU Int. 92:843–850, 2003.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Tanguay, J. F., J. P. Zidar, H. R. Phillips, 3rd, and R. S. Stack. Current status of biodegradable stents. Cardiol. Clin. 12:699–713, 1994.

    CAS  PubMed  Google Scholar 

  99. 99.

    Tanimoto, S., P. W. Serruys, L. Thuesen, D. Dudek, B. de Bruyne, B. Chevalier, and J. A. Ormiston. Comparison of in vivo acute stent recoil between the bioabsorbable everolimus-eluting coronary stent and the everolimus-eluting cobalt chromium coronary stent: insights from the ABSORB and SPIRIT trials. Catheter. Cardiovasc. Interv. 70:515–523, 2007.

    PubMed  Article  Google Scholar 

  100. 100.

    Timmins, L. H., M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore, Jr. Stented artery biomechanics and device design optimization. Med. Biol. Eng. Comput. 45:505–513, 2007.

    PubMed  Article  Google Scholar 

  101. 101.

    Truesdell, C., and W. Noll. The Non-linear Field Theories of Mechanics (3rd ed.). New York: Springer, 2004.

    Google Scholar 

  102. 102.

    Tsuji, T., H. Tamai, K. Igaki, E. Kyo, K. Kosuga, T. Hata, T. Nakamura, S. Fujita, S. Takeda, S. Motohara, and H. Uehata. Biodegradable stents as a platform to drug loading. Int. J. Cardiovasc. Interv. 5:13–16, 2003.

    Article  Google Scholar 

  103. 103.

    Ulery, B. D., L. S. Nair, and C. T. Laurencin. Biomedical applications of biodegradable polymers. J. Polym. Sci. 49:832–864, 2011.

    CAS  Article  Google Scholar 

  104. 104.

    Uurto, I., M. Hämäläinen, V. Suominen, M. Laurila, A. Kotsar, T. Isotalo, T. L. J. Tammela, M. Kellomäki, and J.-P. Salenius. Muraglitazar-eluting bioabsorbable vascular stent inhibits neointimal hyperplasia in porcine iliac arteries. J. Vasc. Interv. Radiol. 26:124–130, 2015.

    PubMed  Article  Google Scholar 

  105. 105.

    Uurto, I., A. Kotsar, T. Isotalo, J. Mikkonen, P. M. Martikainen, M. Kellomaki, P. Tormala, T. L. Tammela, M. Talja, and J. P. Salenius. Tissue biocompatibility of new biodegradable drug-eluting stent materials. J. Mater. Sci. Mater. Med. 18:1543–1547, 2007.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Uurto, I., J. Mikkonen, J. Parkkinen, L. Keski-Nisula, T. Nevalainen, M. Kellomaki, P. Tormala, and J. P. Salenius. Drug-eluting biodegradable poly-d/l-lactic acid vascular stents: an experimental pilot study. J. Endovasc. Ther. 12:371–379, 2005.

    PubMed  Article  Google Scholar 

  107. 107.

    Van der Giessen, W. J., A. M. Lincoff, R. S. Schwartz, H. M. van Beusekom, P. W. Serruys, D. R. Holmes, Jr., S. G. Ellis, and E. J. Topol. Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697, 1996.

    PubMed  Article  Google Scholar 

  108. 108.

    Veeram Reddy, S. R., T. R. Welch, J. Wang, F. Bernstein, J. A. Richardson, J. M. Forbess, and A. W. Nugent. A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model. Catheter. Cardiovasc. Interv. 83:448–456, 2014.

    PubMed  Article  Google Scholar 

  109. 109.

    Verheye, S., J. A. Ormiston, J. Stewart, M. Webster, E. Sanidas, R. Costa, J. R. Costa, Jr., D. Chamie, A. S. Abizaid, I. Pinto, L. Morrison, S. Toyloy, V. Bhat, J. Yan, and A. Abizaid. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc. Interv. 7:89–99, 2014.

    PubMed  Article  Google Scholar 

  110. 110.

    Vieira, A. C., R. M. Guedes, and V. Tita. Constitutive modeling of biodegradable polymers: hydrolytic degradation and time-dependent behavior. Int. J. Solids Struct. 51:1164–1174, 2014.

    CAS  Article  Google Scholar 

  111. 111.

    Vieira, A. C., J. C. Vieira, J. M. Ferra, F. D. Magalhães, R. M. Guedes, and A. T. Marques. Mechanical study of PLA–PCL fibers during in vitro degradation. J. Mech. Behav. Biomed. 4:451–460, 2011.

    CAS  Article  Google Scholar 

  112. 112.

    Waksman, R., R. Erbel, C. Di Mario, J. Bartunek, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, M. Horrigan, C. Ilsley, D. Bose, H. Bonnier, J. Koolen, T. F. Luscher, and N. J. Weissman. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc. Interv. 2:312–320, 2009.

    PubMed  Article  Google Scholar 

  113. 113.

    Weir, N. A., F. J. Buchanan, J. F. Orr, D. F. Farrar, and G. R. Dickson. Degradation of poly-L-lactide: part 2: increased temperature accelerated degradation. Proc. Inst. Mech. Eng. H 218:321–330, 2004.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Welch, T., R. C. Eberhart, and C. J. Chuong. Characterizing the expansive deformation of a bioresorbable polymer fiber stent. Ann. Biomed. Eng. 36:742–751, 2008.

    PubMed  Article  Google Scholar 

  115. 115.

    Welch, T., R. Eberhart, S. Reddy, J. Wang, A. Nugent, and J. Forbess. Novel bioresorbable stent design and fabrication: congenital heart disease applications. Cardiovasc. Eng. Technol. 4:171–182, 2013.

    Article  Google Scholar 

  116. 116.

    Wiebe, J., H. M. Nef, and C. W. Hamm. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J. Am. Coll. Cardiol. 64:2541–2551, 2014.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Wiggins, M. J., J. M. Anderson, and A. Hiltner. Effect of strain and strain rate on fatigue-accelerated biodegradation of polyurethane. J. Biomed. Mat. Res. A 66A:463–475, 2003.

    CAS  Article  Google Scholar 

  118. 118.

    Wiggins, M. J., J. M. Anderson, and A. Hiltner. Biodegradation of polyurethane under fatigue loading. J. Biomed. Mat. Res. A 65A:524–535, 2003.

    CAS  Article  Google Scholar 

  119. 119.

    Wiggins, M. J., M. MacEwan, J. M. Anderson, and A. Hiltner. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J. Biomed. Mater. Res. A 68A:668–683, 2004.

    CAS  Article  Google Scholar 

  120. 120.

    Williams, D. F. Biodegradation of surgical polymers. J. Mater. Sci. 17:1233–1246, 1982.

    CAS  Article  Google Scholar 

  121. 121.

    Wineman, A. S. Branching of strain histories for nonlinear viscoelastic solids with a strain clock. Acta Mech. 153:15–21, 2002.

    Article  Google Scholar 

  122. 122.

    Wineman, A., and J. H. Min. The pressurized cylinder problem for nonlinear viscoelastic materials with a strain clock. Math. Mech. Solids 1:393–409, 1996.

    Article  Google Scholar 

  123. 123.

    Yang, Y., G. Tang, Y. Zhao, X. Yuan, and Y. Fan. Effect of cyclic loading on in vitro degradation of poly(l-lactide-co-glycolide) scaffolds. J. Biomater. Sci. Polym. Ed. 21:53–66, 2010.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Yang, Y., Y. Zhao, G. Tang, H. Li, X. Yuan, and Y. Fan. In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym. Degrad. Stab. 93:1838–1845, 2008.

    CAS  Article  Google Scholar 

  125. 125.

    Ye, Y. W., C. Landau, J. E. Willard, G. Rajasubramanian, A. Moskowitz, S. Aziz, R. S. Meidell, and R. C. Eberhart. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall. Ann. Biomed. Eng. 26:398–408, 1998.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Yuan, X., A. F. T. Mak, and K. Yao. Comparative observation of accelerated degradation of poly(l-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution. Polym. Degrad. Stab. 75:45–53, 2002.

    CAS  Article  Google Scholar 

  127. 127.

    Zarpak, R., O. D. Sanchez, M. Joner, L. G. Guy, G. Leclerc, and R. Virmani. A novel “pro-healing” approach: the COMBO dual therapy stent from a pathological view. Minerva Cardioangiol. 63:31–43, 2015.

    CAS  PubMed  Google Scholar 

  128. 128.

    Zhong, S. P., P. J. Doherty, and D. F. Williams. The effect of applied strain on the degradation of absorbable suture in vitro. Clin. Mater. 14:183–189, 1993.

    Article  Google Scholar 

  129. 129.

    Zidar, J., A. Lincoff, and R. Stack. In: Textbook of Interventional Cardiolology, Edited by E. J. Topol. WB Saunders, 1994, pp. 787–802.

  130. 130.

    Zilberman, M., K. D. Nelson, and R. C. Eberhart. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. B 74:792–799, 2005.

    Article  CAS  Google Scholar 

  131. 131.

    Zilberman, M., N. D. Schwade, and R. C. Eberhart. Protein-loaded bioresorbable fibers and expandable stents: mechanical properties and protein release. J. Biomed. Mater. Res. B 69:1–10, 2004.

    Article  CAS  Google Scholar 

  132. 132.

    Zuniga, A. E., and M. F. Beatty. A new phenomenological model for stress-softening in elastomers. Z. Agnew. Math. Phys. 53:794–814, 2002.

    Article  Google Scholar 

Download references

Acknowledgements

We thank and acknowledge the constructive suggestions made by two anonymous reviewers and the effort made by the three associate editors of the present special issue.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joao S. Soares.

Additional information

Associate Editor Peter McHugh oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soares, J.S., Moore, J.E. Biomechanical Challenges to Polymeric Biodegradable Stents. Ann Biomed Eng 44, 560–579 (2016). https://doi.org/10.1007/s10439-015-1477-2

Download citation

Keywords

  • Biodegradable polymer
  • Scission
  • Degradation
  • Erosion
  • Drug delivery
  • Drug elution
  • Damage
  • Mechanical properties
  • Mathematical modeling