Annals of Biomedical Engineering

, Volume 44, Issue 2, pp 391–403 | Cite as

Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database

  • Kay D. Everett
  • Claire Conway
  • Gerard J. Desany
  • Brian L. Baker
  • Gilwoo Choi
  • Charles A. Taylor
  • Elazer R. Edelman
Medical Stents: State of the Art and Future Directions


Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration’s (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006–2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices.


Stent fracture Arterial deformation Finite element analysis 

Supplementary material

10439_2015_1476_MOESM1_ESM.docx (361 kb)
Supplementary material 1 (DOCX 361 kb)
10439_2015_1476_MOESM2_ESM.avi (11.9 mb)
Supplementary material 2 (AVI 12173 kb)
10439_2015_1476_MOESM3_ESM.avi (10.1 mb)
Supplementary material 3 (AVI 10310 kb)
10439_2015_1476_MOESM4_ESM.avi (11 mb)
Supplementary material 4 (AVI 11295 kb)


  1. 1.
    Aoki, J., G. Nakazawa, K. Tanabe, A. Hoye, H. Yamamoto, T. Nakayama, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc. Interv. 15(69):380–386, 2007.CrossRefGoogle Scholar
  2. 2.
    Argente dos Santos, H. A. F., F. Auricchio, and M. Conti. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity—damage model approach. J. Mech. Behav. Biomed. Mater. 15:78–92, 2012.CrossRefPubMedGoogle Scholar
  3. 3.
    Auricchio, F., A. Constantinescu, M. Conti, and G. Scalet. A computational approach for the lifetime prediction of cardiovascular balloon-expandable stents. Int. J. Fatigue 75:69–79, 2015.CrossRefGoogle Scholar
  4. 4.
    Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013.CrossRefGoogle Scholar
  5. 5.
    Barrera, O., A. Makradi, M. Abbadi, M. Azaouzi, and S. Belouettar. On high-cycle fatigue of 316L stents. Comput. Methods Biomech. Biomed. Eng. 17:239–250, 2014.CrossRefGoogle Scholar
  6. 6.
    CFR—Code of Federal Regulations Title 21 [Internet]. [cited 2014 Jun 4].Google Scholar
  7. 7.
    Choe, H., G. Hur, J. H. Doh, J. Namgung, S. Y. Lee, K. T. Park, et al. A case of very late stent thrombosis facilitated by drug eluting stent fracture: comparative images before and after stent fracture detected by 64-multidetector computed tomography. Int. J. Cardiol. 17(133):e125–128, 2009.CrossRefGoogle Scholar
  8. 8.
    Choi G. In vivo quantification of arterial deformation due to pulsatile and non-pulsatile forces: implications for the design of stents and stent-grafts [Internet], 2009. [cited 2014 Jun 4].Google Scholar
  9. 9.
    Choi, G., C. P. Cheng, N. M. Wilson, and C. A. Taylor. Methods for quantifying three-dimensional deformation of arteries due to pulsatile and nonpulsatile forces: implications for the design of stents and stent grafts. Ann. Biomed. Eng. 37:14–33, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Chung, W.-S., C.-S. Park, K.-B. Seung, P.-J. Kim, J.-M. Lee, B.-K. Koo, et al. The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int. J. Cardiol. 25(125):325–331, 2008.CrossRefGoogle Scholar
  11. 11.
    Conway, C., J. P. McGarry, and P. E. McHugh. Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 11(42):2425–2439, 2014.CrossRefGoogle Scholar
  12. 12.
    Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:1–14, 2012.CrossRefGoogle Scholar
  13. 13.
    Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. In: Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineering, Vol. 138, London, 1956.Google Scholar
  14. 14.
    Dang-Van, K. Macro-micro approach in high-cycle multiaxial fatigue. In: Advances in multiaxial fatigue, edited by D. L. McDowell, and R. Ellis. Philadelphia: ASTM International, 1993, pp. 120–130.CrossRefGoogle Scholar
  15. 15.
    Ding, Z., H. Zhu, and M. H. Friedman. Coronary artery dynamics in vivo. Ann. Biomed. Eng. 1(30):419–429, 2002.CrossRefGoogle Scholar
  16. 16.
    Dordoni, E., A. Meoli, W. Wu, G. Dubini, F. Migliavacca, G. Pennati, et al. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Med. Eng. Phys. 36:842–849, 2014.CrossRefPubMedGoogle Scholar
  17. 17.
    Duda, S. H., B. Pusich, G. Richter, P. Landwehr, V. L. Oliva, A. Tielbeek, et al. Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease six-month results. Circulation 17(106):1505–1509, 2002.CrossRefGoogle Scholar
  18. 18.
    Early, M., and D. J. Kelly. The consequences of the mechanical environment of peripheral arteries for nitinol stenting. Med Biol Eng Comput 49:1279–1288, 2011.CrossRefPubMedGoogle Scholar
  19. 19.
    Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Eng. 12:25–33, 2009.CrossRefGoogle Scholar
  20. 20.
    Halwani, D. O., P. G. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons. The role of vascular calcification in inducing fatigue and fracture of coronary stents. J. Biomed. Mater. Res. B Appl. Biomater. 1(100B):292–304, 2012.CrossRefGoogle Scholar
  21. 21.
    Harewood, F. J., and P. E. McHugh. Modeling of size dependent failure in cardiovascular stent struts under tension and bending. Ann. Biomed. Eng. 35:1539–1553, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Hsiao, H.-M., and M.-T. Yin. An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents. Biomed. Microdev. 16:133–141, 2014.CrossRefGoogle Scholar
  23. 23.
    Iida, O., S. Nanto, M. Uematsu, T. Morozumi, J. Kotani, M. Awata, et al. Effect of exercise on frequency of stent fracture in the superficial femoral artery. Am. J. Cardiol. 15(98):272–274, 2006.CrossRefGoogle Scholar
  24. 24.
    Ino, Y., Y. Toyoda, A. Tanaka, S. Ishii, Y. Kusuyama, T. Kubo, et al. Predictors and prognosis of stent fracture after sirolimus-eluting stent implantation. Circ. J. 73:2036–2041, 2009.CrossRefPubMedGoogle Scholar
  25. 25.
    Jaff, M., M. Dake, J. Pompa, G. Ansel, and T. Yoder. Standardized evaluation and reporting of stent fractures in clinical trials of noncoronary devices. Catheter Cardiovasc. Interv. 1(70):460–462, 2007.CrossRefGoogle Scholar
  26. 26.
    LaDisa, J. F., L. E. Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed. Eng. OnLine 16(5):40, 2006.CrossRefGoogle Scholar
  27. 27.
    Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005.CrossRefPubMedGoogle Scholar
  28. 28.
    Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 1(25):333–337, 2010.CrossRefGoogle Scholar
  29. 29.
    Liao, R., S.-Y. J. Chen, J. C. Messenger, B. M. Groves, J. E. B. Burchenal, and J. D. Carroll. Four-dimensional analysis of cyclic changes in coronary artery shape. Catheter Cardiovasc. Interv. 1(55):344–354, 2002.CrossRefGoogle Scholar
  30. 30.
    Ling, A. J., P. Mwipatayi, T. Gandhi, and K. Sieunarine. Stenting for carotid artery stenosis: fractures, proposed etiology and the need for surveillance. J. Vasc. Surg. 1(47):1220–1226, 2008.CrossRefGoogle Scholar
  31. 31.
    Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006.CrossRefPubMedGoogle Scholar
  32. 32.
    McGarry, J. P., B. P. O’Donnell, P. E. McHugh, and J. G. McGarry. Analysis of the mechanical performance of a cardiovascular stent design based on micromechanical modelling. Comput. Mater. Sci. 31:421–438, 2004.CrossRefGoogle Scholar
  33. 33.
    Meoli, A., E. Dordoni, L. Petrini, F. Migliavacca, G. Dubini, and G. Pennati. Computational modelling of in vitro set-ups for peripheral self-expanding nitinol stents: the importance of stent-wall interaction in the assessment of the fatigue resistance. Cardiovasc. Eng. Technol. 1(4):474–484, 2013.CrossRefGoogle Scholar
  34. 34.
    Messenger, J. C., S. Y. Chen, J. D. Carroll, J. E. Burchenal, K. Kioussopoulos, and B. M. Groves. 3D coronary reconstruction from routine single-plane coronary angiograms: clinical validation and quantitative analysis of the right coronary artery in 100 patients. Int. J. Card. Imaging 16:413–427, 2000.CrossRefPubMedGoogle Scholar
  35. 35.
    Min, P.-K., Y.-W. Yoon, and H. Moon Kwon. Delayed strut fracture of sirolimus-eluting stent: a significant problem or an occasional observation? Int. J. Cardiol. 26(106):404–406, 2006.CrossRefGoogle Scholar
  36. 36.
    Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 3(47):899–907, 2014.CrossRefGoogle Scholar
  37. 37.
    Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, et al. Incidence and predictors of drug-eluting stent fracture in human coronary artery: a pathologic analysis. J. Am. Coll. Cardiol. 17(54):1924–1931, 2009.CrossRefGoogle Scholar
  38. 38.
    Park, M.-W., K. Chang, S. H. Her, J.-M. Lee, Y.-S. Choi, D.-B. Kim, et al. Incidence and clinical impact of fracture of drug-eluting stents widely used in current clinical practice: comparison with initial platform of sirolimus-eluting stent. J. Cardiol. 60:215–221, 2012.CrossRefPubMedGoogle Scholar
  39. 39.
    Park, K. W., J. J. Park, I.-H. Chae, J.-B. Seo, H.-M. Yang, H.-Y. Lee, et al. Clinical characteristics of coronary drug-eluting stent fracture: insights from a two-center des registry. J. Korean Med. Sci. 26:53–58, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Park, J.-S., D.-G. Shin, Y.-J. Kim, G.-R. Hong, and I.-H. Cho. Acute myocardial infarction as a consequence of stent fracture and plaque rupture after sirolimus-eluting stent implantation. Int. J. Cardiol. 15(134):e79–81, 2009.CrossRefGoogle Scholar
  41. 41.
    Pelton, A. R., V. Schroeder, M. R. Mitchell, X.-Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.CrossRefPubMedGoogle Scholar
  42. 42.
    Popma, J. J., K. Tiroch, A. Almonacid, S. Cohen, D. E. Kandzari, and M. B. Leon. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am. J. Cardiol. 1(103):923–929, 2009.CrossRefGoogle Scholar
  43. 43.
    Scheinert, D., S. Scheinert, J. Sax, C. Piorkowski, S. Bräunlich, M. Ulrich, et al. Prevalence and clinical impact of stent fractures after femoropopliteal stenting. J. Am. Coll. Cardiol. 18(45):312–315, 2005.CrossRefGoogle Scholar
  44. 44.
    Serikawa, T., T. Kawasaki, H. Koga, Y. Orita, S. Ikeda, Y. Goto, et al. Late catch-up phenomenon associated with stent fracture after sirolimus-eluting stent implantation: incidence and outcome. J. Interv. Cardiol. 24:165–171, 2011.CrossRefPubMedGoogle Scholar
  45. 45.
    Sianos, G., S. Hofma, J. M. R. Ligthart, F. Saia, A. Hoye, P. A. Lemos, et al. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc. Interv. 1(61):111–116, 2004.CrossRefGoogle Scholar
  46. 46.
    Sines, G., and G. Ohgi. Fatigue criteria under combined stresses or strains. J. Eng. Mater. Technol. 1(103):82–90, 1981.CrossRefGoogle Scholar
  47. 47.
    Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.CrossRefGoogle Scholar
  48. 48.
    Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015.CrossRefPubMedGoogle Scholar
  49. 49.
    Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Strain-gradient modelling of grain size effects on fatigue of CoCr alloy. Acta Mater. 1(78):341–353, 2014.CrossRefGoogle Scholar
  50. 50.
    Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014.CrossRefPubMedGoogle Scholar
  51. 51.
    Umeda, H., T. Kawai, N. Misumida, T. Ota, K. Hayashi, M. Iwase, et al. Impact of sirolimus-eluting stent fracture on 4-year clinical outcomes. Circ. Cardiovasc. Interv. 4:349–354, 2011.CrossRefPubMedGoogle Scholar
  52. 52.
    Wu, W., D.-Z. Yang, M. Qi, and W.-Q. Wang. An FEA method to study flexibility of expanded coronary stents. J. Mater. Process. Technol. 12(184):447–450, 2007.CrossRefGoogle Scholar
  53. 53.
    Zhu, H., J. J. Warner, T. R. Gehrig, and M. H. Friedman. Comparison of coronary artery dynamics pre- and post-stenting. J. Biomech. 36:689–697, 2003.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Kay D. Everett
    • 1
  • Claire Conway
    • 1
  • Gerard J. Desany
    • 2
  • Brian L. Baker
    • 2
  • Gilwoo Choi
    • 3
  • Charles A. Taylor
    • 3
  • Elazer R. Edelman
    • 1
    • 4
  1. 1.Institute for Medical Engineering and ScienceMITCambridgeUSA
  2. 2.Winchester Engineering and Analytical CenterUS Food and Drug AdministrationWinchesterUSA
  3. 3.Department of BioengineeringStanford UniversityStanfordUSA
  4. 4.Cardiovascular Division, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations