Skip to main content
Log in

Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Angelini, A., V. Calzolari, F. Calabrese, G. M. Boffa, F. Maddalena, R. Chioin, and G. Thiene. Myocarditis mimicking acute myocardial infarction: role of endomyocardial biopsy in the differential diagnosis. Heart 84:245–250, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bauer, S., J. C. Edelmann, G. Seemann, F. B. Sachse, and O. Dössel. Estimating intracellular conductivity tensors from confocal microscopy of rabbit ventricular tissue. Biomed. Tech. (Berl) 2013. doi:10.1515/bmt-2013-4333.

  3. Camelliti, P., T. K. Borg, and P. Kohl. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51, 2005.

    Article  CAS  PubMed  Google Scholar 

  4. Chung, K., J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth. Structural and molecular interrogation of intact biological systems. Nature 497:332–337, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhein, S., T. Seidel, A. Salameh, J. Jozwiak, A. Hagen, M. Kostelka, G. Hindricks, and F. W. Mohr. Remodeling of cardiac passive electrical properties and susceptibility to ventricular and atrial arrhythmias. Front. Physiol. 5:424, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diaspro, A. Confocal and two-photon microscopy. Liss: Wiley, 2002.

    Google Scholar 

  7. Dickie, R., R. M. Bachoo, M. A. Rupnick, S. M. Dallabrida, G. M. Deloid, J. Lai, R. A. Depinho, and R. A. Rogers. Three-dimensional visualization of microvessel architecture of whole-mount tissue by confocal microscopy. Microvasc. Res. 72:20–26, 2006.

    Article  CAS  PubMed  Google Scholar 

  8. Edelmann J.-C. Quantitative characterization of infarcted rabbit hearts: improving 3D confocal imaging, analysis of tissue composition and effects on electrical conductivity. In: Institute of Biomedical Engineering Karlsruhe Institute of Technology, 2014.

  9. Eissing, N., L. Heger, A. Baranska, R. Cesnjevar, M. Buttner-Herold, S. Soder, A. Hartmann, G. F. Heidkamp, and D. Dudziak. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes. Immunol. Lett. 161:1–5, 2014.

    Article  CAS  PubMed  Google Scholar 

  10. Emde, B., A. Heinen, A. Godecke, and K. Bottermann. Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur. J. Histochem. 58:2448, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Espada, J., A. Juarranz, S. Galaz, M. Canete, A. Villanueva, M. Pacheco, and J. C. Stockert. Non-aqueous permanent mounting for immunofluorescence microscopy. Histochem. Cell Biol. 123:329–334, 2005.

    Article  CAS  PubMed  Google Scholar 

  12. Fujimoto, T., and S. J. Singer. Immunocytochemical studies of desmin and vimentin in pericapillary cells of chicken. J. Histochem. Cytochem. 35:1105–1115, 1987.

    Article  CAS  PubMed  Google Scholar 

  13. Hama, H., H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, and A. Miyawaki. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14:1481–1488, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Hand, P. E., B. E. Griffith, and C. S. Peskin. Deriving macroscopic myocardial conductivities by homogenization of microscopic models. Bull. Math. Biol. 71:1707–1726, 2009.

    Article  PubMed  Google Scholar 

  15. Hein, S., E. Arnon, S. Kostin, M. Schonburg, A. Elsasser, V. Polyakova, E. P. Bauer, W. P. Klovekorn, and J. Schaper. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991, 2003.

    Article  PubMed  Google Scholar 

  16. Hu, N., C. M. Straub, A. A. Garzarelli, K. H. Sabey, J. W. Yockman, and D. A. Bull. Ligation of the left circumflex coronary artery with subsequent MRI and histopathology in rabbits. J. Am. Assoc. Lab. Anim. Sci. 49:838–844, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, C., A. K. Kaza, R. W. Hitchcock, and F. B. Sachse. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores. Circ. Cardiovasc. Imaging 6:739–746, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Judd, R. M., and B. I. Levy. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ. Res. 68:217–225, 1991.

    Article  CAS  PubMed  Google Scholar 

  19. Ke, M. T., S. Fujimoto, and T. Imai. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16:1154–1161, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Kjorell, U., L. E. Thornell, V. P. Lehto, I. Virtanen, and R. G. Whalen. A comparative analysis of intermediate filament proteins in bovine heart Purkinje fibres and gastric smooth muscle. Eur. J. Cell Biol. 44:68–78, 1987.

    CAS  PubMed  Google Scholar 

  21. Konstam, M. A., D. G. Kramer, A. R. Patel, M. S. Maron, and J. E. Udelson. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc. Imaging 4:98–108, 2011.

    Article  PubMed  Google Scholar 

  22. Lackey, D. P., E. D. Carruth, R. A. Lasher, J. Boenisch, F. B. Sachse, and R. W. Hitchcock. Three-dimensional modeling and quantitative analysis of gap junction distributions in cardiac tissue. Ann. Biomed. Eng. 39:2683–2694, 2011.

    Article  PubMed  Google Scholar 

  23. Lasher, R. A., R. W. Hitchcock, and F. B. Sachse. Towards modeling of cardiac micro-structure with catheter-based confocal microscopy: a novel approach for dye delivery and tissue characterization. IEEE Trans. Med. Imaging 28:1156–1164, 2009.

    Article  PubMed  Google Scholar 

  24. Lasher, R. A., A. Q. Pahnke, J. M. Johnson, F. B. Sachse, and R. W. Hitchcock. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype. J. Tissue Eng. 3:2041731412455354, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269:H571–H582, 1995.

    CAS  PubMed  Google Scholar 

  26. Li, Y., Y. Song, L. Zhao, G. Gaidosh, A. M. Laties, and R. Wen. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat. Protoc. 3:1703–1708, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luke, R. A., and J. E. Saffitz. Remodeling of ventricular conduction pathways in healed canine infarct border zones. J. Clin. Invest. 87:1594–1602, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer, R. A. Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index. Appl. Opt. 18:585–588, 1979.

    Article  CAS  PubMed  Google Scholar 

  29. Rutherford, S. L., M. L. Trew, G. B. Sands, I. J. LeGrice, and B. H. Smaill. High-resolution 3-dimensional reconstruction of the infarct border zone: impact of structural remodeling on electrical activation. Circ. Res. 111:301–311, 2012.

    Article  CAS  PubMed  Google Scholar 

  30. Sands, G. B., D. A. Gerneke, D. A. Hooks, C. R. Green, B. H. Smaill, and I. J. Legrice. Automated imaging of extended tissue volumes using confocal microscopy. Microsc. Res. Tech. 67:227–239, 2005.

    Article  PubMed  Google Scholar 

  31. Sands, G. B., D. A. Gerneke, B. H. Smaill, and I. J. Le Grice. Automated extended volume imaging of tissue using confocal and optical microscopy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:133–136, 2006.

    CAS  PubMed  Google Scholar 

  32. Savio, E., J. I. Goldhaber, J. H. B. Bridge, and F. B. Sachse. A framework for analyzing confocal images of transversal tubules in cardiomyocytes. In: Lecture Notes in Computer Science, edited by F. B. Sachse, and G. Seemann. New York: Springer, 2007, pp. 110–119.

    Google Scholar 

  33. Schwab, B. C., G. Seemann, R. A. Lasher, N. S. Torres, E. M. Wulfers, M. Arp, E. D. Carruth, J. H. Bridge, and F. B. Sachse. Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans. Med. Imaging 32:862–872, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Seidel, T., T. Dräbing, G. Seemann, and F. B. Sachse. A semi-automatic approach for segmentation of three-dimensional microscopic image stacks of cardiac tissue. In: Lecture Notes in Computer Science, edited by S. Ourselin, D. Rueckert, and N. Smith. New york: Springer, 2013, pp. 300–307.

    Google Scholar 

  35. Shinde, A. V., and N. G. Frangogiannis. Fibroblasts in myocardial infarction: a role in inflammation and repair. J. Mol. Cell. Cardiol. 70:74–82, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Smith, R. M., A. Matiukas, C. W. Zemlin, and A. M. Pertsov. Nondestructive optical determination of fiber organization in intact myocardial wall. Microsc. Res. Tech. 71:510–516, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stinstra, J. G., B. Hopenfeld, and R. S. Macleod. On the passive cardiac conductivity. Ann. Biomed. Eng. 33:1743–1751, 2005.

    Article  PubMed  Google Scholar 

  38. Susaki, E. A., K. Tainaka, D. Perrin, F. Kishino, T. Tawara, T. M. Watanabe, C. Yokoyama, H. Onoe, M. Eguchi, S. Yamaguchi, T. Abe, H. Kiyonari, Y. Shimizu, A. Miyawaki, H. Yokota, and H. R. Ueda. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157:726–739, 2014.

    Article  CAS  PubMed  Google Scholar 

  39. Sutton, M. G., and N. Sharpe. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. Tainaka, K., S. I. Kubota, T. Q. Suyama, E. A. Susaki, D. Perrin, M. Ukai-Tadenuma, H. Ukai, and H. R. Ueda. Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159:911–924, 2014.

    Article  CAS  PubMed  Google Scholar 

  41. Tomaselli, G. F., and E. Marban. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 42:270–283, 1999.

    Article  CAS  PubMed  Google Scholar 

  42. van den Borne, S. W., J. Diez, W. M. Blankesteijn, J. Verjans, L. Hofstra, and J. Narula. Myocardial remodeling after infarction: the role of myofibroblasts. Nat. Rev. Cardiol. 7:30–37, 2010.

    Article  PubMed  Google Scholar 

  43. Weber, K. T., Y. Sun, S. K. Bhattacharya, R. A. Ahokas, and I. C. Gerling. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol. 10:15–26, 2013.

    Article  CAS  PubMed  Google Scholar 

  44. Yeh, A. T., and J. Hirshburg. Molecular interactions of exogenous chemical agents with collagen–implications for tissue optical clearing. J. Biomed. Opt. 11:014003, 2006.

    Article  PubMed  Google Scholar 

  45. Young, A. A., I. J. Legrice, M. A. Young, and B. H. Smaill. Extended confocal microscopy of myocardial laminae and collagen network. J. Microsc. 192:139–150, 1998.

    Article  CAS  PubMed  Google Scholar 

  46. Zeisberg, E. M., and R. Kalluri. Origins of cardiac fibroblasts. Circ. Res. 107:1304–1312, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Nora Eccles Harrison Treadwell Foundation (FBS, TS), AHA grant 14POST19820010 (TS), NIH grant R01 HL094464 (FBS), the Studienstiftung des deutschen Volkes (JCE) and Stiftung Familie Klee (JCE). The authors thank Mrs. Jayne Davis and Mrs. Nancy Allen for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Seidel or Frank B. Sachse.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Thomas Seidel and J.-C. Edelmann have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, T., Edelmann, JC. & Sachse, F.B. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Ann Biomed Eng 44, 1436–1448 (2016). https://doi.org/10.1007/s10439-015-1465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1465-6

Keywords

Navigation