Skip to main content

Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals

Abstract

Metal-on-polyethylene (MoP) articulations are one of the most reliable implanted hip prostheses. Unfortunately, long-term failure remains an obstacle to the service life. There is a lack of higher resolution research investigating the metallic surface component of MoP hip implants. This study investigates the surface and subsurface features of metallic cobalt chromium molybdenum alloy (CoCrMo) femoral head components from failed MoP retrievals. Unused prostheses were used for comparison to differentiate between wear-induced defects and imperfections incurred during implant manufacturing. The predominant scratch morphology observed on the non-implanted references was shallow and linear, whereas the scratches on the retrievals consisted of largely nonlinear, irregular scratches of varying depth (up to 150 nm in retrievals and up to 60 nm in reference samples). Characteristic hard phases were observed on the surface and subsurface material of the cast samples. Across all samples, a 100–400 nm thick nanocrystalline layer was visible in the immediate subsurface microstructure. Although observation of the nanocrystalline layer has been reported in metal-on-metal articulations, its presence in MoP retrievals and unimplanted prostheses has not been extensively examined. The results suggest that manufacturing-induced surface and subsurface microstructural features are present in MoP hip prostheses prior to implantation and naturally, these imperfections may influence the in vivo wear processes after implantation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Affatato, S., M. Zavalloni, P. Taddei, M. Di Foggia, C. Fagnano, and M. Viceconti. Comparative study on the wear behaviour of different conventional and cross-linked polyethylenes for total hip replacement. Tribol. Int. 41(8):813–822, 2008. doi:10.1016/j.triboint.2008.02.006.

    Article  CAS  Google Scholar 

  2. Alhassan, S., and T. Goswami. Wear rate model for UHMWPE in total joint applications. Wear 265(1–2):8–13, 2008. doi:10.1016/j.wear.2007.08.017.

    Article  CAS  Google Scholar 

  3. Anissian, H. L., A. Stark, V. Good, H. Dahlstrand, and I. C. Clarke. The wear pattern in metal-on-metal hip prostheses. J. Biomed. Mater. Res. 58(6):673–678, 2001. doi:10.1002/jbm.1068.

    Article  CAS  PubMed  Google Scholar 

  4. Bettini, E., T. Eriksson, M. Boström, C. Leygraf, and J. Pan. Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM: TEM and AFM studies. Electrochim. Acta 56(25):9413–9419, 2011. doi:10.1016/j.electacta.2011.08.028.

    Article  CAS  Google Scholar 

  5. Bhatt, H., and T. Goswami. Implant wear mechanisms—basic approach. Biomed. Mater. 3(4):042001, 2008. doi:10.1088/1748-6041/3/4/042001.

    Article  PubMed  Google Scholar 

  6. Bloebaum, R. D., L. Zou, K. N. Bachus, K. G. Shea, A. A. Hofmann, and H. K. Dunn. Analysis of particles in acetabular components from patients with osteolysis. Clin. Orthop. Relat. Res. 338:109–118, 1997.

    Article  PubMed  Google Scholar 

  7. Briscoe, B. Tribology—friction and wear of engineering materials. Tribol. Int. 25:357, 1992. doi:10.1016/0301-679X(92)90040-T.

    Article  Google Scholar 

  8. Brostow, W., B. P. Gorman, and O. Olea-Mejia. Focused ion beam milling and scanning electron microscopy characterization of polymer + metal hybrids. Mater. Lett. 61(6):1333–1336, 2007. doi:10.1016/j.matlet.2006.07.026.

    Article  CAS  Google Scholar 

  9. Buford, A., and T. Goswami. Review of wear mechanisms in hip implants: paper I—general. Mater. Des. 25(5):385–393, 2004. doi:10.1016/j.matdes.2003.11.010.

    Article  CAS  Google Scholar 

  10. Büscher, R., and A. Fischer. Metallurgical aspects of sliding wear of fcc materials for medical applications. Materwiss Werksttech. 2003(34):966–975, 1011. doi:10.1002/mawe.200300680.

    Google Scholar 

  11. Büscher, R., G. Täger, W. Dudzinski, B. Gleising, M. A. Wimmer, and A. Fischer. Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. J. Biomed. Mater. Res. B 72(1):206–214, 2005. doi:10.1002/jbm.b.30132.

    Article  Google Scholar 

  12. Catelas, I., J. D. Bobyn, J. B. Medley, J. J. Krygier, D. J. Zukor, and O. L. Huk. Size, shape, and composition of wear particles from metal-metal hip simulator testing: effects of alloy and number of loading cycles. J. Biomed. Mater. Res. A 67(1):312–327, 2003. doi:10.1002/jbm.a.10088.

    Article  PubMed  Google Scholar 

  13. Cipriano, C. A., P. S. Issack, B. Beksac, A. G. Della Valle, T. P. Sculco, and E. A. Salvati. Metallosis after metal-on-polyethylene total hip arthroplasty. Am. J. Orthop. (Belle Mead NJ) 37:E18–E25, 2008.

    Google Scholar 

  14. Clarke, I. C., V. Good, P. Williams, et al. Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc. Inst. Mech. Eng. H 214(4):331–347, 2000. doi:10.1243/0954411001535381.

    Article  CAS  PubMed  Google Scholar 

  15. Delaunay, C., I. Petit, I. D. Learmonth, P. Oger, and P. A. Vendittoli. Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop. Traumatol. Surg. Res. 96:894–904, 2010. doi:10.1016/j.otsr.2010.05.008.

    Article  CAS  PubMed  Google Scholar 

  16. Fischer, A. Subsurface microstructural alterations during sliding wear of biomedical metals. Modelling and experimental results. Comput. Mater. Sci. 46(3):586–590, 2009. doi:10.1016/j.commatsci.2009.01.016.

    Article  CAS  Google Scholar 

  17. Goldsmith, A. A., D. Dowson, G. H. Isaac, and J. G. Lancaster. A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc. Inst. Mech. Eng. H 214:39–47, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Heiner, A. D., A. L. Galvin, J. Fisher, J. J. Callaghan, and T. D. Brown. Scratching vulnerability of conventional vs highly cross-linked polyethylene liners because of large embedded third-body particles. J. Arthroplasty 27(5):742–749, 2012. doi:10.1016/j.arth.2011.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Information CI for H. Hip and Knee Replacements in Canada: Canadian Joint Replacement Registry 2013 Annual Report, 2013.

  20. Jacobs, J., A. Shanbhag, T. Glant, J. Black, and J. Galante. Wear debris in total joint replacements. J. Am. Acad. Orthop. Surg. 2:212–220, 1994. http://www.ncbi.nlm.nih.gov/pubmed/10709011.

  21. JAMP-9500F Instruction manual.

  22. Jenkins, P. J., N. D. Clement, D. F. Hamilton, P. Gaston, J. T. Patton, and C. R. Howie. Predicting the cost-effectiveness of total hip and knee replacement: a health economic analysis. J. Bone Joint Surg. B 95B(1):115–121, 2013. doi:10.1302/0301-620X.95B1.29835.

    Article  Google Scholar 

  23. Kato, K. Classification of wear mechanisms/models. Proc. Inst. Mech. Eng. J. 216:349–355, 2002. doi:10.1243/135065002762355280.

    Article  Google Scholar 

  24. Klapperich, C., J. Graham, L. Pruitt, and M. D. Ries. Failure of a metal-on-metal total hip arthroplasty from progressive osteolysis. J. Arthroplasty 14(7):877–881, 1999. doi:10.1016/S0883-5403(99)90042-6.

    Article  CAS  PubMed  Google Scholar 

  25. Kurtz, S. M., K. L. Ong, E. Lau, and K. J. Bozic. Impact of the economic downturn on total joint replacement demand in the United States Updated Projections to 2021. J. Bone Joint Surg. Am. 96(8):624–630, 2014.

    Article  PubMed  Google Scholar 

  26. Liao, Y., R. Pourzal, P. Stemmer, et al. New insights into hard phases of CoCrMo metal-on-metal hip replacements. J. Mech. Behav. Biomed. Mater. 12:39–49, 2012. doi:10.1016/j.jmbbm.2012.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liao, Y., R. Pourzal, M. A. Wimmer, J. J. Jacobs, A. Fischer, and L. D. Marks. Graphitic tribological layers in metal-on-metal hip replacements. Science 334(6063):1687–1690, 2011. doi:10.1126/science.1213902.

    Article  CAS  PubMed  Google Scholar 

  28. Lindgren, J. U., B. H. Brismar, and A. C. Wikstrom. Adverse reaction to metal release from a modular metal-on-polyethylene hip prosthesis. J. Bone Joint Surg. B 93:1427–1430, 2011. doi:10.1302/0301-620X.93B10.27645.

    Article  CAS  Google Scholar 

  29. Mathew, M. T., C. Nagelli, R. Pourzal, et al. Tribolayer formation in a metal-on-metal (MoM) hip joint: an electrochemical investigation. J. Mech. Behav. Biomed. Mater. 29:199–212, 2014. doi:10.1016/j.jmbbm.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  30. Milosev, I., and M. Remskar. In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by high-resolution TEM and XPS analyses. J. Biomed. Mater. Res. A 91(4):1100–1110, 2009. doi:10.1002/jbm.a.32301.

    Article  PubMed  Google Scholar 

  31. Milošev, I., and H. H. Strehblow. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim. Acta 48:2767–2774, 2003. doi:10.1016/S0013-4686(03)00396-7.

    Article  Google Scholar 

  32. Minakawa, H., M. H. Stone, B. M. Wroblewski, J. G. Lancaster, E. Ingham, and J. Fisher. Quantification of third-body damage and its effect on UHMWPE wear with different types of femoral head. J. Bone Joint Surg. B 80(5):894–899, 1998. doi:10.1302/0301-620X.80B5.8675.

    Article  CAS  Google Scholar 

  33. Patten, E. W., E. Beitel, A. Swan, et al. Classification of scratches on retrieved cobalt chrome humeral heads using 3d profilometry. 58th Annual Meeting of the Orthopaedic Research Society 38 (1210): Poster No. 1210, 2012.

  34. Pourzal, R., I. Catelas, R. Theissmann, C. Kaddick, and A. Fischer. Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions. Wear 271(9–10):1658–1666, 2011. doi:10.1016/j.wear.2010.12.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pourzal, R., M. Morlock, W. Ma, and A. Fischer. Are Micro-Structural Changes in MoM Hip Resurfacings Comparable to Total Hip Arthroplasties? Poster No. 2360. In: 55th Annual Meeting of the Orthopaedic Research Society (2360):2360, 2006.

  36. Pourzal, R., R. Theissmann, M. Morlock, and A. Fischer. Micro-structural alterations within different areas of articulating surfaces of a metal-on-metal hip resurfacing system. Wear 267(5–8):689–694, 2009. doi:10.1016/j.wear.2009.01.012.

    Article  CAS  Google Scholar 

  37. Pourzal, R., R. Theissmann, S. Williams, B. Gleising, J. Fisher, and A. Fischer. Subsurface changes of a MoM hip implant below different contact zones. J. Mech. Behav. Biomed. Mater. 2(2):186–191, 2009. doi:10.1016/j.jmbbm.2008.08.002.

    Article  PubMed  Google Scholar 

  38. Rogmark, C. and O. Rolfson. Swedish Hip Arthroplasty Register 2012.

  39. Shen, F.-W., and H. McKellop. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls. Clin. Orthop. Relat. Res. 430:80–88, 2005.

    Article  PubMed  Google Scholar 

  40. Stemmer, P., R. Pourzal, Y. Liao, et al. In: Metal-On-Metal Total Hip Replacement Devices, edited by S. M. Kurtz, A. S. Greenwald, W. H. Mihalko, J. E. Lemons. 2013, pp. 1–17. doi:10.1520/STP1560-EB.

  41. Sun, D., J. A. Wharton, R. J. K. Wood, L. Ma, and W. M. Rainforth. Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids. Tribol. Int. 42(1):99–110, 2009. doi:10.1016/j.triboint.2008.05.005.

    Article  CAS  Google Scholar 

  42. Tan, S. C. Effect of taper design on trunnionosis in metal on polyethylene total hip arthroplasty. J. Arthroplasty 30(7):1269–1272, 2015.

    Article  PubMed  Google Scholar 

  43. Topolovec, M., A. Cör, and I. Milošev. Metal-on-metal vs. metal-on-polyethylene total hip arthroplasty tribological evaluation of retrieved components and periprosthetic tissue. J. Mech. Behav. Biomed. Mater. 34:243–252, 2014. doi:10.1016/j.jmbbm.2014.02.018.

    Article  CAS  PubMed  Google Scholar 

  44. Valero-Vidal, C., L. Casabán-Julián, I. Herraiz-Cardona, and A. Igual-Muñoz. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance. Mater. Sci. Eng. C 33(8):4667–4676, 2013. doi:10.1016/j.msec.2013.07.041.

    Article  CAS  Google Scholar 

  45. Wimmer, M. A., A. Fischer, R. Büscher, et al. Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers. J. Orthop. Res. 28(4):436–443, 2010. doi:10.1002/jor.21020.

    PubMed  Google Scholar 

  46. Wimmer, M. A., J. Loos, R. Nassutt, M. Heitkemper, and A. Fischer. The acting wear mechanisms on metal-on-metal hip joint bearings: in vitro results. Wear 250(1–12):129–139, 2001. doi:10.1016/S0043-1648(01)00654-8.

    Article  Google Scholar 

  47. Wimmer, M. A., M. T. Mathew, M. P. Laurent, et al. Tribochemical reactions in metal-on-metal hip joints influence wear and corrosion. In: Met Total Hip Replace Devices, edited by S. M. Kurtz, A. S. Greenwald, W. H. Mihalko, J. E. Lemons 2013, pp. 1–18. doi:10.1520/STP1560-EB.

  48. Wimmer, M. A., C. Sprecher, R. Hauert, G. Täger, and A. Fischer. Tribochemical reaction on metal-on-metal hip joint bearings. Wear 255(7–12):1007–1014, 2003. doi:10.1016/S0043-1648(03)00127-3.

    Article  CAS  Google Scholar 

  49. Wishart, N., R. Beaumont, E. Young, V. Mccormack, and M. Swanson. National Joint Registry: 11th Annual Report. 2014, December 2013.

  50. Zeng, P., W. M. Rainforth, B. J. Inkson, and T. D. Stewart. Transmission electron microscopy analysis of worn alumina hip replacement prostheses. Acta Mater. 60:2061–2072, 2012. doi:10.1016/j.actamat.2012.01.009.

    Article  CAS  Google Scholar 

  51. Zhu, Y. H., K. Y. Chiu, and W. M. Tang. Review article: polyethylene wear and osteolysis in total hip arthroplasty. J. Orthop. Surg. (Hong Kong). 9(1):91–99, 2001. http://www.ncbi.nlm.nih.gov/pubmed/12468851.

Download references

Acknowledgments

Funding from the European Union’s Seventh Framework Programme (FP7/2007-2013), under Grant Agreement No. GA-310477 is gratefully acknowledged. Funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant Program and the European Union’s Seventh Framework Programme (FP7/2007-2013), under Grant Agreement No. GA-310477 is gratefully acknowledged. Electron microscopy was performed at the Canadian Centre for Electron Microscopy at McMaster University, a facility supported by NSERC and other government agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Grandfield.

Additional information

Associate Editor Sean Kohles oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vuong, V., Pettersson, M., Persson, C. et al. Surface and Subsurface Analyses of Metal-on-Polyethylene Total Hip Replacement Retrievals. Ann Biomed Eng 44, 1685–1697 (2016). https://doi.org/10.1007/s10439-015-1462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1462-9

Keywords

  • Hip implant retrievals
  • Cobalt chromium
  • Metal-on-polymer
  • Transmission electron microscopy
  • Biotribology
  • Electron microscopy