Annals of Biomedical Engineering

, Volume 44, Issue 5, pp 1405–1424 | Cite as

Sonic Estimation of Elasticity via Resonance: A New Method of Assessing Hemostasis



Uncontrolled bleeding threatens patients undergoing major surgery and in care for traumatic injury. This paper describes a novel method of diagnosing coagulation dysfunction by repeatedly measuring the shear modulus of a blood sample as it clots in vitro. Each measurement applies a high-energy ultrasound pulse to induce a shear wave within a rigid walled chamber, and then uses low energy ultrasound pulses to measure displacements associated with the resonance of that shear wave. Measured displacements are correlated with predictions from finite difference time domain models, with the best fit corresponding to the modulus estimate. In our current implementation each measurement requires 62.4 ms. Experimental data was analyzed using a fixed-viscosity algorithm and a free-viscosity algorithm. In experiments utilizing human blood induced to clot by exposure to kaolin, the free-viscosity algorithm quantified the shear modulus of formed clots with a worst-case precision of 2.5%. Precision was improved to 1.8% by utilizing the fixed-viscosity algorithm. Repeated measurements showed a smooth evolution from liquid blood to a firm clot with a shear modulus between 1.4 and 3.3 kPa. These results show the promise of this technique for rapid, point of care assessment of coagulation.


Ultrasound Shear modulus Shear waves Resonance Coagulation FDTD 



The authors would like to thank Andrew Homyk his assistance in the preparation of Figs. 2, 3, and 4. We thank Kiev Blasier, Elisa Ferrante, Caroline Wang, and Bob Fehnel for performing the human blood experiments. We thank Cindy Lloyd for formulating the kaolin. We gratefully acknowledge design work by Andy Homyk, Tim Higgins, and Aaron Buchannan at HemoSonics, and Frank Reagan, Lei Zong, and Jeff Gunnarsson at Key Technologies Inc. We acknowledge Francesco Viola for his contributions to the architecture of both the instrument and the cartridge. We thank Timothy J. Fischer and Thomas B. Givens for their helpful suggestions on the manuscript. The authors also thank Dr. Michael F. Insana and Ms. Yue Wang of the University of Illinois for sharing their insights into modeling shear wave propagation via the Finite Difference Time Domain method. This work was supported by NIH Grants 1R43CA180318-01A1 and 2R44HL103030-02A1, and the investors of HemoSonics, LLC.

Conflict of interest

Author William F. Walker is a major shareholder in and employee of HemoSonics, LLC, the sole licensee and assignee of patents protecting the technology described in this manuscript. Author F. Scott Corey is an employee and shareholder in KeyTech Incorporated, a design partner of and shareholder in HemoSonics, LLC.


  1. 1.
    Bernal, M., J. L. Gennisson, P. Flaud, and M. Tanter. Shear wave elastography quantification of blood elasticity during clotting. Ultrasound Med. Biol. 38:2218–2228, 2012.CrossRefPubMedGoogle Scholar
  2. 2.
    Bernal, M., J.-L. Gennisson, P. Flaud, and M. Tanter. Two Dimension (2D) elasticity maps of coagulation of blood using SuperSonic Shearwave Imaging. Acoustics 2012. 2012.Google Scholar
  3. 3.
    Bux, J. Transfusion-related acute lung injury (TRALI): a serious adverse event of blood transfusion. Vox Sang. 89:1–10, 2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Engoren, M. C., R. H. Habib, A. Zacharias, T. A. Schwann, C. J. Riordan, and S. J. Durham. Effect of blood transfusion on long-term survival after cardiac operation. Ann. Thorac. Surg. 74:1180–1186, 2002.CrossRefPubMedGoogle Scholar
  5. 5.
    Ferraris, V. A., S. P. Saha, J. H. Oestreich, H. K. Song, T. Rosengart, T. B. Reece, et al. 2012 update to the society of thoracic surgeons guideline on use of antiplatelet drugs in patients having cardiac and noncardiac operations. Ann. Thorac. Surg. 94:1761–1781, 2012.CrossRefPubMedGoogle Scholar
  6. 6.
    FibScreen, Platelet Function Test for ReoRox, MRX 1917. Nyköping, Sweden: MEDIROX AB, 2012.Google Scholar
  7. 7.
    Franchini, M., M. Montagnana, E. J. Favaloro, and G. Lippi. The bidirectional relationship of cancer and hemostasis and the potential role of anticoagulant therapy in moderating thrombosis and cancer spread. Semin. Thromb. Hemost. 35:644–653, 2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Ganter, M. T., and C. K. Hofer. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth. Analg. 106:1366–1375, 2008.CrossRefPubMedGoogle Scholar
  9. 9.
    Hess, J. R., and J. H. Lawson. The coagulopathy of trauma versus disseminated intravascular coagulation. J. Trauma 60:S12–S19, 2006.CrossRefPubMedGoogle Scholar
  10. 10.
    Hoffman, M., and D. M. Monroe. A cell-based model of hemostasis. Thromb. Haemost. 85(6):958–965, 2001.PubMedGoogle Scholar
  11. 11.
    Huang, C. C., P. Y. Chen, and C. C. Shih. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Med. Phys. 40:042901, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Jensen, J. A., and N. B. Svendsen. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39:262–267, 1992.CrossRefPubMedGoogle Scholar
  13. 13.
    Lang, T., A. Bauters, S. L. Braun, B. Pötzsch, K.-W. von Pape, H.-J. Kolde, and M. Lakner. Multi-centre investigation on reference ranges for ROTEM thromboelastometry. Blood Coagul. Fibrinolysis 16(4):301–310, 2005.CrossRefPubMedGoogle Scholar
  14. 14.
    Lorente, J. A., L. J. García-Frade, L. Landín, R. de Pablo, C. Torrado, E. Renes, and A. García-Avello. Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 103:1536–1542, 1993.CrossRefPubMedGoogle Scholar
  15. 15.
    Mauldin, F. W., F. Viola, T. C. Hamer, E. M. Ahmed, S. B. Crawford, D. M. Haverstick, et al. Adaptive force sonorheometry for assessment of whole blood coagulation. Clin. Chim. Acta 411(9–10):638–644, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mauldin, F. W., F. Viola, and W. F. Walker. Reduction of echo decorrelation via complex principal component filtering. Ultrasound Med. Biol. 35:1325–1343, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Murphy, S., and F. H. Gardner. Platelet preservation: effect of storage temperature on maintenance of platelet viability—deleterious effect of refrigerated storage. N. Engl. J. Med. 280:1094–1098, 1969.CrossRefPubMedGoogle Scholar
  18. 18.
    Nahirnyak, V. M., S. W. Yoon, and C. K. Holland. Acousto-mechanical and thermal properties of clotted blood. J. Acoust. Soc. Am. 119:3766–3772, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Orescanin, M., Y. Wang, and M. F. Insana. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(2):389–398, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Sarvazyan, A. P., O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24(9):1419–1435, 1998.CrossRefPubMedGoogle Scholar
  21. 21.
    Scarpelini, S., S. G. Rhind, B. Nascimento, H. Tien, P. N. Shek, H. T. Peng, et al. Normal range values for thromboelastography in healthy adult volunteers. Braz. J. Med. Biol. Res. 42(12):1210–1217, 2009.CrossRefPubMedGoogle Scholar
  22. 22.
    Scharf, Louis L. Statistical Signal Processing. Addison-Wesley: Reading, 1991.Google Scholar
  23. 23.
    Schmitt, C., A. Hadj Henni, and G. Cloutier. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior. J. Biomech. 44(4):622–629, 2011.CrossRefPubMedGoogle Scholar
  24. 24.
    Shung, K. K., and G. A. Thieme. Ultrasonic Scattering in Biological Tissues. Boca Raton: CRC Press, 1993.Google Scholar
  25. 25.
    Smith, F. B., A. J. Lee, F. G. Fowkes, J. F. Price, A. Rumley, and G. D. Lowe. Hemostatic factors as predictors of ischemic heart disease and stroke in the edinburgh artery study. Arterioscler. Thromb. Vasc. Biol. 17(11):3321–3325, 1997.CrossRefPubMedGoogle Scholar
  26. 26.
    Sneddon, I. N. Fourier Transforms. New York: Dover Publications, 1995.Google Scholar
  27. 27.
    Solomon, C., H. Schöchl, M. Ranucci, U. Schött, and C. J. Schlimp. Comparison of fibrin-based clot elasticity parameters measured by free oscillation rheometry (ReoRox ®) versus thromboelastometry (ROTEM ®). Scand. J. Clin. Lab. Investig. 75:239, 2015.CrossRefGoogle Scholar
  28. 28.
    Torr, G. R. The acoustic radiation force. Am. J. Phys. 52(5):402–408, 1984.CrossRefGoogle Scholar
  29. 29.
    Viola, F., M. D. Kramer, M. B. Lawrence, J. P. Oberhauser, and W. F. Walker. Sonorheometry: a noncontact method for the dynamic assessment of thrombosis. Ann. Biomed. Eng. 32:696–705, 2004.CrossRefPubMedGoogle Scholar
  30. 30.
    Viola, F., F. W. Mauldin, X. Lin-Schmidt, D. M. Haverstick, M. B. Lawrence, and W. F. Walker. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clin. Chim. Acta 411:106–113, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Viola, F., and W. F. Walker. A comparison of the performance of time-delay estimators in medical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(4):392–401, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Virieux, J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901, 1986.CrossRefGoogle Scholar
  33. 33.
    Walker, W. F., and G. E. Trahey. A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42:301–308, 1995.CrossRefGoogle Scholar
  34. 34.
    Yarnell, J. W., I. A. Baker, P. M. Sweetnam, D. Bainton, J. R. O’Brien, P. J. Whitehead, and P. C. Elwood. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease. The caerphilly and speedwell collaborative heart disease studies. Circulation 83(3):836–844, 1991.CrossRefPubMedGoogle Scholar
  35. 35.
    Yee, K. S. Numerical solution of initial boundary value problems involving maxwells equations in isotropic media. IEEE Trans. Antennas Propag. 14(3):302–307, 1966.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  1. 1.Product DevelopmentKey Technologies, Inc.BaltimoreUSA
  2. 2.HemoSonics, LLCCharlottesvilleUSA
  3. 3.Department of Biomedical EngineeringDurhamUSA

Personalised recommendations