Abstract
Alzheimer’s disease is characterized by accumulation of amyloid-β (Aβ) in the brain and in the walls of cerebral arteries. The focus of this work is on clearance of Aβ along artery walls, the failure of which may explain the accumulation of Aβ in Alzheimer’s disease. Periarterial basement membranes form continuous channels from cerebral capillaries to major arteries on the surface of the brain. Arterial pressure pulses drive peristaltic flow in the basement membranes in the same direction as blood flow. Here we forward the hypothesis that flexible structures within the basement membrane, if oriented such they present greater resistance to forward than retrograde flow, may cause net reverse flow, advecting Aβ along with it. A solution was obtained for peristaltic flow with low Reynolds number, long wavelength compared to channel height and small channel height compared to vessel radius in a Darcy–Brinkman medium representing a square array of cylinders. Results show that retrograde flow is promoted by high cylinder volume fraction and low peristaltic amplitude. A decrease in cylinder concentration and/or an increase in amplitude, both of which may occur during ageing, can reduce retrograde flow or even cause a transition from retrograde to forward flow. Such changes may explain the accumulation of Aβ in the brain and in artery walls in Alzheimer’s disease.
Similar content being viewed by others
Abbreviations
- a :
-
Mean half height of channel
- a c :
-
Cylinder radius
- b :
-
Wave amplitude
- c :
-
Wave speed
- f :
-
Drag force on a cylinder per unit length
- G :
-
Gravity vector
- h :
-
Half height of channel
- K :
-
Cylinder drag coefficient
- l :
-
Half distance between cylinders
- L :
-
Length of channel
- p :
-
Pressure
- q :
-
Flow rate per unit breadth
- R :
-
Vessel radius
- t :
-
Time
- \(\hat{u} \equiv u - c\) :
-
x direction velocity in the wave frame
- \(\bar{u}\) :
-
Average velocity in the laboratory frame
- V = (u,v,w):
-
Cartesian fluid velocity vector in the laboratory frame
- x, y :
-
Streamwise and radial coordinates
- λ :
-
Wave length
- \(\psi\) :
-
Stream function \(\psi_{x} \equiv u, \, \psi_{y} \equiv v\)
- ρ :
-
Fluid density
- μ :
-
Dynamic viscosity
- 0 :
-
Initial condition (when H = 1)
- c :
-
Cylinder
- L :
-
Over the length of the channel
- max :
-
Maximum volume fraction of cylinders (cylinders touch each other)
- N, T :
-
Normal and tangential (orientation of the cylinder relative to the flow)
- λ :
-
Over one wavelength
- x, y, η, τ, ξ :
-
Differentiation with respect to these variables
- \(H \equiv \frac{{h\left( {x,t} \right)}}{a}\) :
-
Normalized channel half height
- \(\bar{H} = 1\) :
-
Average channel half height over one wave period
- \(P \equiv \frac{{2\pi a^{2} }}{\lambda \mu c}p\) :
-
Dimensionless pressure
- \(Q \equiv \frac{1}{ac}q\) :
-
Dimensionless flow rate in the laboratory frame
- \(\hat{Q}\) :
-
Dimensionless flow rate in wave frame
- \(\bar{Q}\) :
-
Spatial mean dimensionless flow rate in the laboratory frame
- \(U \equiv \frac{u}{c}\) :
-
Dimensionless x direction velocity
- \(\chi \equiv \frac{\psi }{ac}\) :
-
Normalized stream function
- \(\varepsilon = \frac{{\pi a_{c}^{2} }}{{4l^{2} }}\) :
-
Volume fraction of cylinders
- \(\varPhi = 1 - \varepsilon\) :
-
Porosity of the channel
- \(\eta \equiv \frac{y}{a}\) :
-
Normalized radial direction coordinate
- \(\tau \equiv 2\pi \frac{ct}{\lambda }\) :
-
Normalized time
- \(\xi \equiv 2\pi \frac{x}{\lambda }\) :
-
Normalized axial direction coordinate
- \(Re \equiv \frac{\rho ac\alpha }{\mu }\) :
-
Reynolds number
- \(\alpha \equiv \frac{2\pi a}{\lambda }\) :
-
Wave number (related to slope and curvature of channel)
- \(\beta \equiv \frac{{a_{c} }}{a}\) :
-
Cylinder radius to channel half height ratio
- κ :
-
Permeability
- \(\phi \equiv \frac{b}{a}\) :
-
Amplitude ratio
- \(\gamma = \frac{h\sqrt K }{2l}\) :
-
Darcy number
- θ :
-
Angle between the cylinder and the channel axis
References
Abbott, N. J. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45(4):545–552, 2004.
Arbel-Ornath, M., E. Hudry, K. Eikermann-Haerter, S. Hou, J. L. Gregory, L. Zhao, R. A. Betensky, M. P. Frosch, S. M. Greenberg, and B. J. Bacskai. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol. 126:353–364, 2013. doi:10.1007/s00401-013-1145-2.
Bogren, H. G., R. H. Klipstein, D. N. Firmin, R. H. Mohiaddin, S. R. Underwood, S. O. Rees, and D. B. Longmore. Quantitation of antegrade and retrograde blood flow in the human aorta by magnetic resonance velocity mapping. Am. Heart J. 117(6):1214–1222, 1989.
Bradbury, M. W., H. F. Cserr, and R. J. Westrop. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am. J. Physiol. 240(4):F329–F336, 1981.
Byron, A., M. J. Randles, J. D. Humphries, A. Mironov, H. Hamidi, S. Harris, P. W. Mathieson, M. A. Saleem, S. S. Satchell, R. Zent, M. J. Humphries, and R. Lennon. Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J. Am. Soc. Nephrol. 2014. doi:10.1681/ASN.2013070795.
Carare, R. O., M. Bernardes-Silva, T. A. Newman, A. M. Page, J. A. Nicoll, V. H. Perry, and R. O. Weller. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34(2):131–144, 2008.
Carare, R. O., C. A. Hawkes, M. Jeffrey, R. N. Kalaria, and R. O. Weller. Cerebral amyloid angiopathy, Prion angiopathy, CADASIL and the spectrum of Protein Elimination-Failure Angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol. Appl. Neurobiol. 39(6):593–611, 2013. doi:10.1111/nan.12042.
Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26:477–488, 2005.
Hawkes, C. A., W. Hartig, J. Kacza, R. Schliebs, R. O. Weller, J. A. Nicoll, and R. O. Carare. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 121(4):431–443, 2011; (Epub 2011/01/25).
Hawkes, C. A., P. M. Sullivan, S. Hands, R. O. Weller, J. A. Nicoll, and R. O. Carare. Disruption of arterial perivascular drainage of amyloid-β from the brains of mice expressing the human APOE ε4 allele. PLoS One 7(7):e41636, 2012. doi:10.1371/journal.pone.0041636.
Hohenster, E., and P. D. Yurchenco. Laminins in basement membrane assembly. Cell Adhesion Migration 7(1):56–63, 2013.
Iliff, J. J., M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman, E. A. Nagelhus, and M. Nedergaard. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4(147):147ra11, 2012; (Epub 2012/08/17).
Iliff, J. J., M. Wang, D. M. Zeppenfeld, A. Venkataraman, B. A. Plog, Y. Liao, R. Deane, and M. Nedergaard. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. Off. J. Soc. Neurosci. 33:18190–18199, 2013.
Jaffrin, M. Y., and A. H. Shapiro. Peristaltic pumping. Ann. Rev. Fluid. Mech. 3:13–36, 1971.
Kaviany, M. Laminar flow through a porous channel bounded by isothermal parallel plates. Int. J. Heat Mass Transfer 28(4):851–858, 1985.
Klingelhöfer, J., B. Conrad, R. Benecke, and B. Frank. Transcranial Doppler ultrasonography of carotid-basilar collateral circulation in subclavian steal. Stroke 19(8):1036–1042, 1988.
Lennon, R., A. Byron, J. D. Humphries, M. J. Randles, A. Carisey, S. Murphy, D. Knight, P. E. Brenchley, R. Zent, and M. J. Humphries. Global analysis reveals the complexity of the human glomerular extracellular matrix. J. Am. Soc. Nephrol. 2014. doi:10.1681/ASN.2013030233.
Liu, H., P. R. Patil, and U. Narusawa. On Darcy–Brinkman equation: Viscous flow between two parallel plates packed with regular square arrays of cylinders. Entropy 9:118–131, 2007.
Masters, C. L., and K. Beyreuther. Amyloid-β production. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders2nd, edited by D. W. Dickson, and R. O. Weller. Oxford: Wiley, 2011, pp. 92–96.
Miosge, N. The ultrastructural composition of basement membranes in vivo. Histol. Histopathol. 16:1239–1248, 2001.
Mitchell, G. F., M. A. van Buchem, S. Sigurdsson, J. D. Gotal, M. K. Jonsdottir, O. Kjartansson, M. Garcia, T. Aspelund, T. B. Harris, V. Gudnason, and L. J. Launer. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility—Reykjavik Study. Brain 134:3398–3407, 2011.
Preston, S. D., P. V. Steart, A. Wilkinson, J. A. R. Nicoll, and R. O. Weller. Capillary and arterial amyloid angiopathy in Alzheimer’s disease: Defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol. Appl. Neurobiol. 29:106–117, 2003.
Sangani, A. S., and A. Acrivos. Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiphase Flow 8(3):193–206, 1982.
Schley, D., R. Carare-Nnadi, C. P. Please, V. H. Perry, and R. O. Weller. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J. Theor. Biol. 238(4):962–974, 2006; (Epub 2005/08/23).
Suleiman, H., L. Zhang, R. Roth, J. E. Heuser, H. Miner, A. S. Shaw, and A. Dani. Nanoscale protein architecture of the kidney glomerular basement membrane. eLife 2:e01149, 2013. doi:10.7554/eLife.01149.
Szentistvanyi, I., C. S. Patlak, R. A. Ellis, and H. F. Cserr. Drainage of interstitial fluid from different regions of rat brain 32. Am. J. Physiol. 246:6, 1984.
Viswanathan, A., and S. M. Greenberg. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 70(6):871–880, 2011; (Epub 2011/12/23).
Wang, P., and W. L. Olbricht. Fluid mechanics in the perivascular space. J. Theor. Biol. 274(1):52–57, 2011.
Weller, R. O., D. Boche, and J. A. Nicoll. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol. 118:87–102, 2009. doi:10.1007/s00401-009-0498-z.
Weller, R. O., E. Djuanda, H.-Y. Yow, and R. O. Carare. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 117:1–14, 2009.
Weller, R. O., C. A. Hawkes, R. O. Carare, and J. Hardy. Does the difference between PART and Alzheimer’s disease lie in the age-related changes in cerebral arteries that trigger the accumulation of Abeta and propagation of tau? Acta Neuropathol. 129:763–766, 2015. doi:10.1007/s00401-015-1416-1.
Weller, R. O., M. Subash, S. D. Preston, I. Mazanti, and R. O. Carare. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 18(2):253–266, 2008.
Yamada, S., M. de Pasquale, C. S. Patlak, and H. F. Cserr. Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am. J. Physiol. 261:H1197–H1204, 1991.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Aleksander S. Popel oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Sharp, M.K., Diem, A.K., Weller, R.O. et al. Peristalsis with Oscillating Flow Resistance: A Mechanism for Periarterial Clearance of Amyloid Beta from the Brain. Ann Biomed Eng 44, 1553–1565 (2016). https://doi.org/10.1007/s10439-015-1457-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-015-1457-6