Skip to main content

Advertisement

Log in

An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications

  • Medical Stents: State of the Art and Future Directions
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This article provides an overview of the connection between the microstructural state and the mechanical response of various bioresorbable polylactide (PLA) devices for medical applications. PLLA is currently the most commonly used material for bioresorbable stents and sutures, and its use is increasing in many other medical applications. The non-linear mechanical response of PLLA, due in part to its low glass transition temperature (T g ≈ 60 °C), is highly sensitive to the molecular weight and molecular orientation field, the degree of crystallinity, and the physical aging time. These microstructural parameters can be tailored for specific applications using different resin formulations and processing conditions. The stress–strain, deformation, and degradation response of a bioresorbable medical device is also strongly dependent on the time history of applied loads and boundary conditions. All of these factors can be incorporated into a suitable constitutive model that captures the multiple physics that are involved in the device response. Currently developed constitutive models already provide powerful computations simulation tools, and more progress in this area is expected to occur in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agrawal, C. M., K. F. Haas, D. A. Leopold, and H. G. Clark. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13(3):176–182, 1992.

    Article  CAS  PubMed  Google Scholar 

  2. Bai, H., H. Huang, Q. Xiu, Q. Zhang, and Q. Fu. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55:6924–6934, 2014.

    Article  CAS  Google Scholar 

  3. Bergström, J. S. Mechanics of Solid Polymers: Theory and Computational Modeling. Norwich: William Andrew Publishing, 2015.

    Google Scholar 

  4. Bergström, J. S., and M. C. Boyce. Constitutive modeling of time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech. Mater. 33:523–530, 2001.

    Article  Google Scholar 

  5. DeJong, L. E. S., T. M. DeBarardino, D. E. Brooks, and K. Judson. In vivo comparison of a metal versus a biodegradable suture anchor. Arthroscopy 20:511–516, 2004.

    Article  PubMed  Google Scholar 

  6. Delabarde, C., C. J. G. Plummer, P. E. Bourban, and J. A. E. Månson. Accelerated ageing and degradation in poly-l-lactide/hydroxyapatite nanocomposites. Polym. Degrad. Stab. 96:595–607, 2011.

    Article  CAS  Google Scholar 

  7. Dreher, M. L., S. Nagaraja, H. Bui, and D. Hong. Characterization of load dependent creep behavior in medically relevant absorbable polymers. J. Mech. Behav. Biomed. Mater. 29:470–479, 2014.

    Article  CAS  PubMed  Google Scholar 

  8. Engels, T. A. P., S. H. M. Söntjens, T. H. Smit, and L. E. Govaert. Time-dependent failure of amorphous polylactides in static loading conditions. J. Mater. Sci. 21:89–97, 2010.

    CAS  Google Scholar 

  9. Erne, P., M. Schier, and T. J. Resink. The road to bioabsorbable stents: reaching clinical reality? Cadriovasc. Intervent. Radiol. 29:11–16, 2006.

    Article  Google Scholar 

  10. Eswaran, S. K., J. A. Kelley, J. S. Bergström, and V. L. Giddings. Material modeling of polylactide. In: Simulia Customer Conference, Barcelona, Spain, 2011.

  11. Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4:283–291, 1936.

    Article  CAS  Google Scholar 

  12. Garg, S., and P. W. Serruys. Coronary stents, looking forward. JACC 56(10):43–78, 2010.

    Article  Google Scholar 

  13. Gefen, A. Computational simulations of stress shielding and bone resorption around existing and computer-designed orthopaedic screws. Med. Biol. Eng. Compu. 40:311–322, 2002.

    Article  CAS  Google Scholar 

  14. Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 14:103–114, 1996.

    Article  Google Scholar 

  15. Grijpma, D., and A. J. Pennings. Co(polymers) of l-lactide, mechanical properties. Macromol. Chem. Phys. 195:1649–1663, 1994.

    Article  CAS  Google Scholar 

  16. Hayman, D., C. Bergerson, S. Miller, M. Moreno, and J. E. Moore. The effect of static and dynamic loading on degradation of PLLA stent fibers. J. Biomech. Eng. 136(081006):1–9, 2014.

    Google Scholar 

  17. Henton, D. E., P. Gruber, J. Lunt, and J. Randall. Polylactic acid technology In: Natural Fibers, Biopolymers, and Biocomposites, Boca Raton, PL: Taylor & Francis, 2005, pp. 527–577.

  18. Hermawan, H., D. Dubé, and D. Mantovani. Developments in metallic biodegradable stents. Acta Biomater. 6:1693–1697, 2010.

    Article  CAS  PubMed  Google Scholar 

  19. Imola, M. J., D. D. Hamlar, W. Shao, K. Chowdhury, and S. Tatum. Resorbable plate fixation in pediatric cranofacial surgery. JAMA Facial Plast. Surg. 3(2):79–90, 2001.

    Article  CAS  Google Scholar 

  20. J. S. Bergström, Advanced modeling of bioresorbable PLA medical devices. In: ANTEC, Cincinnati, OH, 2013.

  21. Khan, K. A., and T. El-Sayed. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers. Acta Mech. 224:287–305, 2013.

    Article  Google Scholar 

  22. Klompen, E. T. J., T. A. P. Engels, L. E. Govaert, and H. E. H. Meijer. Modeling of the postyield response of glassy polymers: influence of thermomechanical history. Macromolecules 38:6997–7008, 2005.

    Article  CAS  Google Scholar 

  23. Klompen, E. T. J., T. A. P. Engels, L. C. A. van Breemen, P. J. G. Schreurs, L. E. Govaert, and H. E. H. Meijer. Quantitative prediction of long-term failure of polycarbonate. Macromolecules 38:7009–7017, 2005.

    Article  CAS  Google Scholar 

  24. Knowles, J. K. The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids. Int. J. Fract. 13(5):611–639, 1977.

    Article  Google Scholar 

  25. Kolk, A., R. Kohnke, C. H. Saely, and O. Ploder. Are biodegradable osteosyntheses still an option for midface trauma? Longitudinal evaluation of three different PLA-based materials. BioMed Res. Int. Article ID 621481 (in press).

  26. Langer, R. Drug delivery and targeting. Nature 392:5–10, 1998.

    CAS  PubMed  Google Scholar 

  27. Lembeck, B., and N. Wülker. Severe cartilage damage by broken poly-l-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 13:283–286, 2005.

    Article  PubMed  Google Scholar 

  28. Lou, C. W., C. H. Yao, Y. S. Chen, T. C. Hsieh, J. H. Lin, and W. H. Hsing. Manufacturing and properties of PLA absorbable surgical suture. Text. Res. J. 78:958–965, 2008.

    Article  CAS  Google Scholar 

  29. Maharana, T., B. Mohanty, and Y. S. Negi. Melt-solid polycondensation of lactic acid and its biodegradability. Prog. Polym. Sci. 34:99–124, 2009.

    Article  CAS  Google Scholar 

  30. Marec, P. E., J. C. Ferry, J. C. Quantin, J. C. Bénézet, F. Bonfils, S. Guilbert, and A. Bergeret. Influence of melt processing conditions on poly(lactic acid) degradation: molar mass distribution and crystallization. Polym. Degrad. Stab. 110:353–363, 2014.

    Article  Google Scholar 

  31. Martin, O., and L. Averous. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219, 2001.

    Article  CAS  Google Scholar 

  32. Middleton, J., and A. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Moravej, M., and D. Mantovani. Biodegradable metals for cardiovascular stent application: interest and new opportunities. Int. J. Mol. Sci. 12:4250–4270, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nakafuku, C., and S. Takehisa. Glass transition and mechanical properties of PLLA and PDLLA-PGA copolymer blends. J. Appl. Polym. Sci. 93:2164–2173, 2004.

    Article  CAS  Google Scholar 

  35. Nerker, J. A., B. A. Ramsay, and M. Kontopoulou. Dramatic improvements in strain hardening of crystallization kinetics of PLA by simple reactive modification in the melt state. Macromol. Mater. Eng. 299:1419–1424, 2014.

    Article  Google Scholar 

  36. Oca, H. M. D., and I. M. Ward. Structure and mechanical properties of poly(l-lactic acid) crystals and fibers. J. Polym. Sci., Part B: Polym. Phys. 45:892–902, 2007.

    Article  Google Scholar 

  37. Onuma, Y., and P. W. Serruys. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797, 2011.

    Article  PubMed  Google Scholar 

  38. Pan, P., Z. Liang, B. Zhu, T. Dong, and Y. Inoue. Roles of physical aging on crystallization kinetics and induction period of poly(l-lactide). Macromolecules 41:8011–8019, 2008.

    Article  CAS  Google Scholar 

  39. Pan, P., B. Zhu, and Y. Inoue. Enthalpy relaxation and embrittlement of poly(l-lactide) during physical aging. Macromolecules 40:9664–9671, 2007.

    Article  CAS  Google Scholar 

  40. Perego, G., G. D. Cella, and C. Bastioli. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 59:37–43, 1996.

    Article  CAS  Google Scholar 

  41. Sin, L. T. Polylactic acid: PLA biopolymer technology and applications. Norwich: William Andrew (Plastics Design Library), 2012.

    Google Scholar 

  42. Smit, T. H., T. A. P. Engels, S. H. M. Söntjens, and L. E. Govaert. Time-dependent failure in load-bearing polymers: a potential hazard in structural applications of polylactides. J. Mater. Sci. Mater. Med. 21:871–878, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Soares, J. S. Constitutive Modeling for Biodegradable Polymer for Application in Endovascular Stents. Ph.D. Dissertation, Texas A&M University, 2008.

  44. Soares, J. S., J. E. Moore, and K. R. Rajogopal. Constitutive framework for biodegradable polymers with application to biodegradable stents. ASAIO J. 54:295–301, 2008.

    Article  CAS  PubMed  Google Scholar 

  45. Soares, J. S., K. R. Rajogopal, and J. E. Moore. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanobiol. 9:177–186, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Söntjens, S. H. M., T. A. P. Engels, T. H. Smit, and L. E. Govaert. Time-dependent failure of amorphous poly-D, l-lactide: influence of molecular weight. J. Mech. Behav. Biomed. Mater. 13:69–77, 2012.

    Article  PubMed  Google Scholar 

  47. Sturm, S. W., T. A. P. Engels, T. H. Smit, and L. E. Govaert. Premature failure of poly-l/d-lactide bioresorbable spinal cages; Pittfalls in designing in time-dependent materials. In 13th International Conference on Deformation, Yield and Fracture of Polymers, 2006.

  48. Tami, H., K. Igaki, and E. Kyo. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404, 2000.

    Article  Google Scholar 

  49. Tsuji, H., and S. Miyauchi. Poly(l-lactide): VI effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym. Degrad. Stability 71:415–424, 2001.

    Article  CAS  Google Scholar 

  50. Van Dijk, M., D. C. Tunc, T. H. Smit, P. Hingham, E. H. Burger, and P. I. Wuisman. In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J. Biomed. Mater. Res. 63(6):752–759, 2002.

    Article  PubMed  Google Scholar 

  51. PolyUMod software, Veryst Engineering, LLC., Needham, MA, 2015.

  52. Vieira, A. C., J. C. Vieira, J. M. Ferra, F. D. Magalães, R. M. Guides, and A. T. Marques. Mechanical study of PLA-PCL fibers during in vitro degradation. J. Mech. Behav. Biomed. Mater. 4:451–460, 2011.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, L., W. Ma, R. A. Gross, and S. P. McCarthy. Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(1-caprolactone). Polym. Degrad. Stabil. 59:161–168, 1998.

    Article  CAS  Google Scholar 

  54. Waris, E., N. Ashammakhi, H. Happonen, T. Raatikainen, O. Kaarela, P. Törmälä, S. Santavirta, and Y. T. Konttinen. Bioabsorbable miniplating verses metallic fixation for metacarpal fractures. Clin. Orthop. Relat. Res. 410:310–319, 2003.

    Article  PubMed  Google Scholar 

  55. Wiebe, J., H. M. Nef, and C. W. Hamm. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J. Am. Coll. Cardiol. 64:2541–2551, 2014.

    Article  CAS  PubMed  Google Scholar 

  56. Zaroulis, J. S., and M. C. Boyce. Temperature, strain rate, and strain state dependence of the evolution in mechanical behavior and structure of poly(ethylene terephtalate) with finite stain deformation. Polymer 38(6):1303–1315, 1997.

    Article  CAS  Google Scholar 

  57. Zhou, Z., J. Zhou, Q. Yi, L. Liu, Y. Zhao, and H. Nie. Biological evaluation of poly-l-lactic acid composite containing bioactive glass. Polym. Bull. 65:411–423, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörgen S. Bergström.

Additional information

Associate Editor Abdul I. Barakat oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergström, J.S., Hayman, D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Ann Biomed Eng 44, 330–340 (2016). https://doi.org/10.1007/s10439-015-1455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1455-8

Keywords

Navigation