Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 5, pp 1524–1537 | Cite as

Inter-operator Reliability of Magnetic Resonance Image-Based Computational Fluid Dynamics Prediction of Cerebrospinal Fluid Motion in the Cervical Spine

  • Bryn A. Martin
  • Theresia I. Yiallourou
  • Soroush Heidari Pahlavian
  • Suraj Thyagaraj
  • Alexander C. Bunck
  • Francis Loth
  • Daniel B. Sheffer
  • Jan Robert Kröger
  • Nikolaos Stergiopulos
Article

Abstract

For the first time, inter-operator dependence of MRI based computational fluid dynamics (CFD) modeling of cerebrospinal fluid (CSF) in the cervical spinal subarachnoid space (SSS) is evaluated. In vivo MRI flow measurements and anatomy MRI images were obtained at the cervico-medullary junction of a healthy subject and a Chiari I malformation patient. 3D anatomies of the SSS were reconstructed by manual segmentation by four independent operators for both cases. CFD results were compared at nine axial locations along the SSS in terms of hydrodynamic and geometric parameters. Intraclass correlation (ICC) assessed the inter-operator agreement for each parameter over the axial locations and coefficient of variance (CV) compared the percentage of variance for each parameter between the operators. Greater operator dependence was found for the patient (0.19 < ICC < 0.99) near the craniovertebral junction compared to the healthy subject (ICC > 0.78). For the healthy subject, hydraulic diameter and Womersley number had the least variance (CV = ~2%). For the patient, peak diastolic velocity and Reynolds number had the smallest variance (CV = ~3%). These results show a high degree of inter-operator reliability for MRI-based CFD simulations of CSF flow in the cervical spine for healthy subjects and a lower degree of reliability for patients with Type I Chiari malformation.

Keywords

Cerebrospinal fluid (CSF) Computational fluid dynamics (CFD) Magnetic resonance imaging (MRI) Chiari malformation Neurohydrodynamics Subarachnoid space 

Notes

Acknowledgement

This work was supported by the Swiss National Foundation Grant Nos. 205321_132695/1 and IZK0Z2_152766, NIH R-15 Grant 492 1R15NS071455-01, American Syringomyelia and Chiari Alliance Project and Chiari and Syringomyelia Patient Education Foundation.

Conflict of Interest

None.

References

  1. 1.
    Augst, A. D., D. C. Barratt, A. D. Hughes, F. P. Glor, S. A. M. Thom, and X. Y. Xu. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images. J. Biomech. Eng. 125(2):218–222, 2003.CrossRefPubMedGoogle Scholar
  2. 2.
    Baledent, O., C. Gondry-Jouet, M. E. Meyer, G. De Marco, D. Le Gars, M. C. Henry-Feugeas, and I. Idy-Peretti. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest. Radiol. 39(1):45–55, 2004.CrossRefPubMedGoogle Scholar
  3. 3.
    Baledent, O., M. C. Henry-Feugeas, and I. Idy-Peretti. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest. Radiol. 36(7):368–377, 2001.CrossRefPubMedGoogle Scholar
  4. 4.
    Bertram, C. D. Evaluation by fluid/structure-interaction spinal-cord simulation of the effects of subarachnoid-space stenosis on an adjacent syrinx. J. Biomech. Eng. 132(6):061009, 2010. doi: 10.1115/1.4001165.CrossRefPubMedGoogle Scholar
  5. 5.
    Bertram, C. D., A. R. Brodbelt, and M. A. Stoodley. The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J. Biomech. Eng. 127(7):1099–1109, 2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Bruni, J. E. Cerebral ventricular system and cerebrospinal fluid encyclopedia of human biology. 1977.Google Scholar
  7. 7.
    Bunck, A. C., J. R. Kroeger, A. Juettner, A. Brentrup, B. Fiedler, G. R. Crelier, B. A. Martin, W. Heindel, D. Maintz, W. Schwindt, et al. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur. Radiol. 22(9):1860–1870, 2012.CrossRefPubMedGoogle Scholar
  8. 8.
    Bunck, A. C., J. R. Kroger, A. Juttner, A. Brentrup, B. Fiedler, F. Schaarschmidt, G. R. Crelier, W. Schwindt, W. Heindel, T. Niederstadt, et al. Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur. Radiol. 21(8):1788–1796, 2011.CrossRefPubMedGoogle Scholar
  9. 9.
    Clarke, E. C., D. F. Fletcher, M. A. Stoodley, and L. E. Bilston. Computational fluid dynamics modelling of cerebrospinal fluid pressure in Chiari malformation and syringomyelia. J. Biomech. 46(11):1801–1809, 2013.CrossRefPubMedGoogle Scholar
  10. 10.
    Cushing, H. Studies on the cerebro-spinal fluid: I. Introduction. J. Med. Res. 31(1):1–19, 1914.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Dolar, M. T., V. M. Haughton, B. J. Iskandar, and M. Quigley. Effect of craniocervical decompression on peak CSF velocities in symptomatic patients with Chiari I malformation. Am. J. Neuroradiol. 25(1):142–145, 2004.PubMedGoogle Scholar
  12. 12.
    Glor, F. P., B. Ariff, A. D. Hughes, P. R. Verdonck, S. A. Thom, D. C. Barratt, and X. Y. Xu. Operator dependence of 3-D ultrasound-based computational fluid dynamics for the carotid bifurcation. IEEE Trans. Med. Imaging 24(4):451–456, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. Thom, P. R. Verdonck, and X. Y. Xu. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31(2):142–151, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta, A., D. Church, D. Barnes, and A. B. Hassan. Cut to the chase: on the need for genotype-specific soft tissue sarcoma trials. Ann. Oncol. 20(3):399–400, 2009.CrossRefPubMedGoogle Scholar
  15. 15.
    Gupta, S., M. Soellinger, P. Boesiger, D. Poulikakos, and V. Kurtcuoglu. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J. Biomech. Eng. 131(2):021010, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Gupta, S., M. Soellinger, D. M. Grzybowski, P. Boesiger, J. Biddiscombe, D. Poulikakos, and V. Kurtcuoglu. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J. R. Soc. Interface. 7(49):1195–1204, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hall, J. E., and A. C. Guyton. Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia: Saunders/Elsevier, p. xix, 2011.Google Scholar
  18. 18.
    Haughton, V. M., F. R. Korosec, J. E. Medow, M. T. Dolar, and B. J. Iskandar. Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. Am. J. Neuroradiol. 24(2):169–176, 2003.PubMedGoogle Scholar
  19. 19.
    Heidari Pahlavian, S., T. Yiallourou, R. S. Tubbs, A. C. Bunck, F. Loth, M. Goodin, et al. The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS One 9(4):e91888, 2014. doi: 10.1371/journal.pone.0091888.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Helgeland, A., K. A. Mardal, V. Haughton, and B. A. Reif. Numerical simulations of the pulsating flow of cerebrospinal fluid flow in the cervical spinal canal of a Chiari patient. J. Biomech. 47(5):1082–1090, 2014.CrossRefPubMedGoogle Scholar
  21. 21.
    Henry-Feugeas, M. C., I. Idy-Peretti, O. Baledent, P. Cornu, H. Lejay, J. Bittoun, and A. E. Schouman-Claeys. Cerebrospinal fluid flow waveforms: MR analysis in chronic adult hydrocephalus. Invest. Radiol. 36(3):146–154, 2001.CrossRefPubMedGoogle Scholar
  22. 22.
    Hentschel, S., K. A. Mardal, A. E. Lovgren, S. Linge, and V. Haughton. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. Am. J. Neuroradiol. 31(6):997–1002, 2010.CrossRefPubMedGoogle Scholar
  23. 23.
    Hsu, Y., H. D. Hettiarachchi, D. C. Zhu, and A. A. Linninger. The frequency and magnitude of cerebrospinal fluid pulsations influence intrathecal drug distribution: key factors for interpatient variability (Vol 115, p 386, 2012). Anesth. Analg. 115(4):879, 2012.CrossRefGoogle Scholar
  24. 24.
    Iskandar, B. J., M. Quigley, and V. M. Haughton. Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. J. Neurosurg. 101(2 Suppl):169–178, 2004.PubMedGoogle Scholar
  25. 25.
    Kurtcuoglu, V., M. Soellinger, P. Summers, K. Boomsma, D. Poulikakos, P. Boesiger, and Y. Ventikos. Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius. J. Biomech. 40(6):1235–1245, 2007.CrossRefPubMedGoogle Scholar
  26. 26.
    Kurtcuoglu, V., M. Soellinger, P. Summers, K. Boomsma, D. Poulikakos, P. Boesiger, et al. Reconstruction of cerebrospinal fluid flow in the third ventricle based on MRI data. In: Medical Image Computing and Computer-Assisted Intervention: MICCAI International Conference on Medical Image Computing and Computer-Assisted Intervention, vol. 8(Pt 1), pp. 786–793, 2005.Google Scholar
  27. 27.
    Linge, S. O., V. Haughton, A. E. Lovgren, K. A. Mardal, A. Helgeland, and H. P. Langtangen. Effect of tonsillar herniation on cyclic CSF flow studied with computational flow analysis. Am. J. Neuroradiol. 32(8):1474–1481, 2011.CrossRefPubMedGoogle Scholar
  28. 28.
    Linge, S. O., V. Haughton, A. E. Lovgren, K. A. Mardal, and H. P. Langtangen. CSF flow dynamics at the craniovertebral junction studied with an idealized model of the subarachnoid space and computational flow analysis. Am. J. Neuroradiol. 31(1):185–192, 2010. doi: 10.3174/ajnr.A1766.CrossRefPubMedGoogle Scholar
  29. 29.
    Linninger, A. A., C. Tsakiris, D. C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger, et al. Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans. Bio Med. Eng. 52(4):557–565, 2005. doi: 10.1109/TBME.2005.844021.CrossRefGoogle Scholar
  30. 30.
    Linninger, A. A., M. Xenos, D. C. Zhu, M. R. Somayaji, S. Kondapalli, and R. D. Penn. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Bio Med. Eng. 54(2):291–302, 2007.CrossRefGoogle Scholar
  31. 31.
    Long, Q., B. Ariff, S. Z. Zhao, S. A. Thom, A. D. Hughes, and X. Y. Xu. Reproducibility study of 3D geometrical reconstruction of the human carotid bifurcation from magnetic resonance images. Magn. Reson. Med. 49(4):665–674, 2003.CrossRefPubMedGoogle Scholar
  32. 32.
    Loth, F., M. A. Yardimci, and N. Alperin. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123(1):71–79, 2001.PubMedGoogle Scholar
  33. 33.
    Martin, B. A., W. Kalata, F. Loth, T. J. Royston, and J. N. Oshinski. Syringomyelia hydrodynamics: an in vitro study based on in vivo measurements. J. Biomech. Eng. 127(7):1110–1120, 2005.CrossRefPubMedGoogle Scholar
  34. 34.
    Martin, B. A., W. Kalata, N. Shaffer, P. Fischer, M. Luciano, and F. Loth. Hydrodynamic and longitudinal impedance analysis of cerebrospinal fluid dynamics at the craniovertebral junction in type I Chiari malformation. PLoS One 8(10):e75335, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Martin, B. A., R. Labuda, T. J. Royston, J. N. Oshinski, B. Iskandar, and F. Loth. Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories. J. Biomech. Eng. 132(11):111007, 2010.CrossRefPubMedGoogle Scholar
  36. 36.
    Martin, B. A., and F. Loth. The influence of coughing on cerebrospinal fluid pressure in an in vitro syringomyelia model with spinal subarachnoid space stenosis. Cerebrospinal Fluid Res 6:17, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Martin, B. A., P. Reymond, J. Novy, O. Baledent, and N. Stergiopulos. A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system. Am. J. Physiol. Heart Circ. Physiol. 302(7):H1492–H1509, 2012.CrossRefPubMedGoogle Scholar
  38. 38.
    Matsumae, M., A. Hirayama, H. Atsumi, S. Yatsushiro, and K. Kuroda. Velocity and pressure gradients of cerebrospinal fluid assessed with magnetic resonance imaging. J. Neurosurg. 120(1):218–227, 2014.CrossRefPubMedGoogle Scholar
  39. 39.
    Moore, J. A., D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Eng. 27(1):32–41, 1999.CrossRefPubMedGoogle Scholar
  40. 40.
    Pahlavian, S. H., A. C. Bunck, F. Loth, R. S. Tubbs, T. Yiallourou, J. R. Kroeger, et al. Characterization of the discrepancies between four-dimensional phase-contrast magnetic resonance imaging and in-silico simulations of cerebrospinal fluid dynamics. J. Biomech. Eng. 137(5):051002, 2015. doi: 10.1115/1.4029699.CrossRefGoogle Scholar
  41. 41.
    Quigley, M. F., B. Iskandar, M. E. Quigley, M. Nicosia, and V. Haughton. Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology 232(1):229–236, 2004.CrossRefPubMedGoogle Scholar
  42. 42.
    Roldan, A., O. Wieben, V. Haughton, T. Osswald, and N. Chesler. Characterization of CSF hydrodynamics in the presence and absence of tonsillar ectopia by means of computational flow analysis. Am. J. Neuroradiol. 30(5):941–946, 2009.CrossRefPubMedGoogle Scholar
  43. 43.
    Sansur, C. A., J. D. Heiss, H. L. DeVroom, E. Eskioglu, R. Ennis, and E. H. Oldfield. Pathophysiology of headache associated with cough in patients with Chiari I malformation. J. Neurosurg. 98(3):453–458, 2003.CrossRefPubMedGoogle Scholar
  44. 44.
    Shaffer, N., B. Martin, and F. Loth. Cerebrospinal fluid hydrodynamics in type I Chiari malformation. Neurol. Res. 33(3):247–260, 2011.CrossRefPubMedGoogle Scholar
  45. 45.
    Shaffer, N., B. A. Martin, B. Rocque, C. Madura, O. Wieben, B. Iskandar, et al. Cerebrospinal fluid flow impedance is elevated in type I Chiari malformation. J. Biomech. Eng. 2013. doi: 10.1115/1.4026316.PubMedGoogle Scholar
  46. 46.
    Shaffer, N., B. A. Martin, B. Rocque, C. Madura, O. Wieben, B. J. Iskandar, et al. Cerebrospinal fluid flow impedance is elevated in type I Chiari malformation. J. Biomech. Eng. 136(2):021012, 2014. doi: 10.1115/1.4026316.CrossRefPubMedGoogle Scholar
  47. 47.
    Sigmund, E. E., G. A. Suero, C. Hu, K. McGorty, D. K. Sodickson, G. C. Wiggins, and J. A. Helpern. High-resolution human cervical spinal cord imaging at 7 T. NMR Biomed. 25(7):891–899, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Speer, M. C., D. S. Enterline, L. Mehltretter, P. Hammock, J. Joseph, M. Dickerson, R. G. Ellenbogen, T. H. Milhorat, M. A. Hauser, and T. M. George. Review article: chiari type I malformation with or without syringomyelia: prevalence and genetics. J. Genet. Counsel. 12(4):297–311, 2003.CrossRefGoogle Scholar
  49. 49.
    Sweetman, B., and A. A. Linninger. Cerebrospinal fluid flow dynamics in the central nervous system. Ann. Biomed. Eng. 39(1):484–496, 2011.CrossRefPubMedGoogle Scholar
  50. 50.
    Urbizu, A., M. A. Poca, X. Vidal, A. Rovira, J. Sahuquillo, and A. Macaya. MRI-based morphometric analysis of posterior cranial fossa in the diagnosis of chiari malformation type I. J. Neuroimaging 24(3):250–256, 2014.CrossRefPubMedGoogle Scholar
  51. 51.
    Williams, B. Further thoughts on valvular action of Arnold-Chiari malformation. Dev. Med. Child Neurol. 6:105–112, 1971.Google Scholar
  52. 52.
    Williams, B. Simultaneous cerebral and spinal fluid pressure recordings Cerebrospinal dissociation with lesions at the foramen magnum. Acta Neurochir. 59(1–2):123–142, 1981.CrossRefPubMedGoogle Scholar
  53. 53.
    Wiswell, T. E., D. J. Tuttle, R. S. Northam, and G. R. Simonds. Major congenital neurologic malformations. A 17-year survey. Am. J. Dis. Child. 144(1):61–67, 1990.CrossRefPubMedGoogle Scholar
  54. 54.
    Yiallourou, T. I., J. R. Kroger, N. Stergiopulos, D. Maintz, A. C. Bunck, and B. A. Martin. Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PLoS One 7(12):e52284, 2012.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Bryn A. Martin
    • 1
  • Theresia I. Yiallourou
    • 2
  • Soroush Heidari Pahlavian
    • 3
  • Suraj Thyagaraj
    • 3
  • Alexander C. Bunck
    • 4
    • 5
  • Francis Loth
    • 3
  • Daniel B. Sheffer
    • 6
  • Jan Robert Kröger
    • 4
    • 5
  • Nikolaos Stergiopulos
    • 2
  1. 1.Neurophysiological Imaging and Modeling Laboratory, Department of Biological EngineeringThe University of IdahoMoscowUSA
  2. 2.Laboratory of Hemodynamics and Cardiovascular TechnologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Department of Mechanical Engineering, Conquer Chiari Research CenterThe University of AkronAkronUSA
  4. 4.Department of RadiologyUniversity Hospital of CologneCologneGermany
  5. 5.Department of Clinical RadiologyUniversity of MuensterMünsterGermany
  6. 6.Department of Biomedical EngineeringThe University of AkronAkronUSA

Personalised recommendations