Advertisement

Annals of Biomedical Engineering

, Volume 44, Issue 5, pp 1710–1720 | Cite as

Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells

  • Peng Chen
  • Yu-Yen Huang
  • Gauri Bhave
  • Kazunori Hoshino
  • Xiaojing Zhang
Article

Abstract

We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare circulating tumor cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate.

Keywords

Inkjet printing Micromagnets Circulating tumor cells Microfluidic Immunomagnetic cell separation 

Notes

Acknowledgment

We thank our collaborator Professor Konstantin V. Sokolov at the University of Texas MD Anderson Cancer Center and Dr. Zhigang Li at the Geisel School of Medicine at Dartmouth for the supports in validating the presented results. We thank Ms. Nancy Lane and Drs. Michael Huebschman, Jonathan W. Uhr, and Eugene P. Frenkel at the University of Texas Southwestern Medical Center for their invaluable suggestions on the experiment design. We appreciate the help from Professor Tim Yeh and Dr. Judy Obliosca at the University of Texas at Austin with the spectrofluorometer measurement. We are grateful for the financial support from the National Institute of Health (NIH) National Cancer Institute (NCI) Cancer Diagnosis Program under Grant 1R01CA139070.

References

  1. 1.
    Chen, P., Y.-Y. Huang, K. Hoshino, and X. Zhang. Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips. Lab Chip 14:446–458, 2014.CrossRefPubMedGoogle Scholar
  2. 2.
    Chen, P., Y.-Y. Huang, K. Hoshino, and J. X. J. Zhang. Microscale magnetic field modulation for enhanced capture and distribution of rare circulating tumor cells. Sci. Rep. 5:8745, 2015.Google Scholar
  3. 3.
    Chen, Y., P. Li, P.-H. Huang, Y. Xie, J. D. Mai, L. Wang, N.-T. Nguyen, and T. J. Huang. Rare cell isolation and analysis in microfluidics. Lab Chip 14:626–645, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dempsey, N. M., D. Le Roy, H. Marelli-Mathevon, G. Shaw, A. Dias, R. B. G. Kramer, L. Viet Cuong, M. Kustov, L. F. Zanini, C. Villard, K. Hasselbach, C. Tomba, and F. Dumas-Bouchiat. Micro-magnetic imprinting of high field gradient magnetic flux sources. Appl. Phys. Lett. 104:262401, 2014.CrossRefGoogle Scholar
  5. 5.
    Fuller, S. B., E. J. Wilhelm, and J. M. Jacobson. Ink-jet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11:54–60, 2002.CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Macia, L., A. Morrin, M. R. Smyth, and A. J. Killard. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 135:845–867, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoshino, K., P. Chen, Y.-Y. Huang, and X. Zhang. Computational analysis of microfluidic immunomagnetic rare cell separation from a particulate blood flow. Anal. Chem. 84:4292–4299, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hoshino, K., Y.-Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11:3449–3457, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hou, H. W., M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S. W. Tan, W. T. Lim, J. Han, A. A. S. Bhagat, and C. T. Lim. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3:1259, 2013.Google Scholar
  10. 10.
    Huang, Y. Y., K. Hoshino, P. Chen, C. H. Wu, N. Lane, M. Huebschman, H. Liu, K. Sokolov, J. W. Uhr, and E. P. Frenkel. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system. Biomed. Microdevices 15(4):673–681, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jensen, G. C., C. E. Krause, G. A. Sotzing, and J. F. Rusling. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys. Chem. Chem. Phys. 13:4888–4894, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kim, J. D., J. S. Choi, B. S. Kim, Y. C. Choi, and Y. W. Cho. Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51:2147–2154, 2010.CrossRefGoogle Scholar
  13. 13.
    Mitchell, M. J., E. Wayne, K. Rana, C. B. Schaffer, and M. R. King. TRAIL-coated leukocytes that kill cancer cells in the circulation. Proc. Natl. Acad. Sci. 111:930–935, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nagrath, S., L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, and A. Muzikansky. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nawarathna, D., N. Norouzi, J. McLane, H. Sharma, N. Sharac, T. Grant, A. Chen, S. Strayer, R. Ragan, and M. Khine. Shrink-induced sorting using integrated nanoscale magnetic traps. Appl. Phys. Lett. 102:063504, 2013.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ozkumur, E., A. M. Shah, J. C. Ciciliano, B. L. Emmink, D. T. Miyamoto, E. Brachtel, M. Yu, P.-I. Chen, B. Morgan, and J. Trautwein. Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Sci. Trans. Med. 5:179ra47, 2013.CrossRefGoogle Scholar
  17. 17.
    Riethdorf, S., H. Fritsche, V. Müller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, and F. Jänicke. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin. Cancer Res. 13:920–928, 2007.CrossRefPubMedGoogle Scholar
  18. 18.
    Seekamp, J., S. Zankovych, A. Helfer, P. Maury, C. S. Torres, G. Boettger, C. Liguda, M. Eich, B. Heidari, and L. Montelius. Nanoimprinted passive optical devices. Nanotechnology 13:581, 2002.CrossRefGoogle Scholar
  19. 19.
    Shields, I. V., C. Wyatt, C. D. Reyes, and G. P. López. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. Inkjet printing—process and its applications. Adv. Mater. 22:673–685, 2010.CrossRefPubMedGoogle Scholar
  21. 21.
    Singh, M., H. M. Haverinen, P. Dhagat, and G. E. Jabbour. Inkjet printing-process and its applications. Adv. Mater. 22:673, 2010.CrossRefPubMedGoogle Scholar
  22. 22.
    Stott, S. L., C.-H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, and G. K. Korir. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. 107:18392–18397, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tekin, E., P. J. Smith, S. Hoeppener, A. M. van den Berg, A. S. Susha, A. L. Rogach, J. Feldmann, and U. S. Schubert. Inkjet printing of luminescent CdTe nanocrystal–polymer composites. Adv. Funct. Mater. 17:23–28, 2007.CrossRefGoogle Scholar
  24. 24.
    Tekin, E., P. J. Smith, and U. S. Schubert. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713, 2008.CrossRefGoogle Scholar
  25. 25.
    Truskett, V. N., and M. P. Watts. Trends in imprint lithography for biological applications. Trends Biotechnol. 24:312–317, 2006.CrossRefPubMedGoogle Scholar
  26. 26.
    Voit, W., W. Zapka, L. Belova, and K. Rao. Application of inkjet technology for the deposition of magnetic nanoparticles to form micron-scale structures. IEE Proc. Sci. Meas. Technol. 150:252–256, 2003.CrossRefGoogle Scholar
  27. 27.
    Williams, S. C. P. Circulating tumor cells. Proc. Natl. Acad. Sci. 110:4861, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu, W., G.-Y. Jung, D. Olynick, J. Straznicky, Z. Li, X. Li, D. Ohlberg, Y. Chen, S.-Y. Wang, and J. Liddle. One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl. Phys. A 80:1173–1178, 2005.CrossRefGoogle Scholar
  29. 29.
    Yung, C. W., J. Fiering, A. J. Mueller, and D. E. Ingber. Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177, 2009.CrossRefPubMedGoogle Scholar
  30. 30.
    Zanini, L. F., N. M. Dempsey, D. Givord, G. Reyne, and F. Dumas-Bouchiat. Autonomous micro-magnet based systems for highly efficient magnetic separation. Appl. Phys. Lett. 99:232504, 2011.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Peng Chen
    • 1
  • Yu-Yen Huang
    • 3
  • Gauri Bhave
    • 1
  • Kazunori Hoshino
    • 2
  • Xiaojing Zhang
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  2. 2.Department of Biomedical EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations