Skip to main content
Log in

Influence of Geometry and Mechanical Properties on the Accuracy of Patient-Specific Simulation of Women Pelvic Floor

  • Computational Biomechanics for Patient-Specific Applications
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The woman pelvic system involves multiple organs, muscles, ligaments, and fasciae where different pathologies may occur. Here we are most interested in abnormal mobility, often caused by complex and not fully understood mechanisms. Computer simulation and modeling using the finite element (FE) method are the tools helping to better understand the pathological mobility, but of course patient-specific models are required to make contribution to patient care. These models require a good representation of the pelvic system geometry, information on the material properties, boundary conditions and loading. In this contribution we focus on the relative influence of the inaccuracies in geometry description and of uncertainty of patient-specific material properties of soft connective tissues. We conducted a comparative study using several constitutive behavior laws and variations in geometry description resulting from the imprecision of clinical imaging and image analysis. We find that geometry seems to have the dominant effect on the pelvic organ mobility simulation results. Provided that proper finite deformation non-linear FE solution procedures are used, the influence of the functional form of the constitutive law might be for practical purposes negligible. These last findings confirm similar results from the fields of modeling neurosurgery and abdominal aortic aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abed, H., D. Rahn, L. Lowenstein, E. Balk, J. Clemons, and R. Rogers. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int. Urogynecol. J. Pel. 22(7):789–798, 2011.

    Article  Google Scholar 

  2. Ashton-Miller, J. A., and J. O. L. Delancey. On the biomechanics of vaginal birth and common sequelae. Ann. Rev. Biomed. Eng. 11:163–176, 2009.

    Article  CAS  Google Scholar 

  3. Bot-Robin, V., J.-F. Lucot, G. Giraudet, C. Rubod, and M. Cosson. Use of vaginal mesh for pelvic organ prolapse repair: a literature review. Gynecol. Surg. 39(4):232–234, 2011.

    Google Scholar 

  4. Cobb, W. S., J. M. Burns, K. W. Kercher, B. D. Matthews, H. Norton, and B. T. Heniford. Normal intra-abdominal pressure in healthy adults. J. Surg. Res. 129:231–235, 2005.

    Article  PubMed  Google Scholar 

  5. Cosson, M., C. Rubod, A. Vallet, J. F. Witz, P. Dubois, and M. Brieu. Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model. Int. Urogynecol. J. 24(1):105–112, 2013.

    Article  PubMed  Google Scholar 

  6. Chantereau, P., M. Brieu, M. Kammal, J. Farthmann, B. Gabriel, and M. Cosson. Mechanical properties of pelvic soft tissue of young women and impact of aging. Int. Urogynecol. J. 25(11):1547–1553, 2014.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, L., J. A. Ashton-Miller, and J. O. L. DeLancey. A 3D finite element model of anterior vaginal wall support to evaluate mechanisms underlying cystocele formation. Int. J. Biomech. 42(10):1371–1377, 2009.

    Article  Google Scholar 

  8. Chen, Y., F. Y. Li, X. Lin, J. Chen, C. Chen, and M. Guess. The recovery of pelvic organ support during the first year postpartum. BJOG Int. J. Obstet. Gynaecol. 120(11):1430–1437, 2013.

    Article  CAS  Google Scholar 

  9. Clay, J. C., C. Rubod, M. Brieu, M. Boukerrou, J. Fasel, and M. Cosson. Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapse surgery. Int. Urogynecol. J. 12:1535–1538, 2010.

    Google Scholar 

  10. DeLancey, J. O. L. Anatomic aspects of vaginal eversion after hysterectomy. Am. J. Obstet. Gynecol. 166(6):1717–1724, 1992.

    Article  PubMed  CAS  Google Scholar 

  11. DeLancey, J. O. L. Fascial and muscular abnormalities in woman with urethral hypermobility and anterior vaginal wall prolapse. Am. J. Obstet. Gynecol. 187:93–98, 2002.

    Article  PubMed  Google Scholar 

  12. Delingette, H., and N. Ayache. Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis. Comput. Grap. 5(1):62–73, 1999.

    Article  Google Scholar 

  13. Dequidt, J., M. Marchal, C. Duriez, and S. Cotin. Interactive simulation of embolization coils: modeling and experimental validation. MICCAI 11:695–702, 2008.

    PubMed  Google Scholar 

  14. Gilchrist, A. S., A. Gupta, R. C. Eberhart, and P. E. Zimmern. Biomechanical properties of anterior vaginal wall prolapse tissue predict outcome of surgical repair. J. Urogynecol. 183(3):1069–1073, 2010.

    Google Scholar 

  15. Goh, J. T. Biomechanical properties of prolapsed vaginal tissue in pre and postmenopausal women. Int. Urogynecol. J. Pel. 13:76–79, 2002.

    Article  CAS  Google Scholar 

  16. Hollenstein, M., G. Bugnard, R. Joos, S. Kropf, P. Villiger, and E. Mazza. Towards laparoscopic tissue aspiration. Med. Image Anal. 17(8):1037–1045, 2013.

    Article  PubMed  Google Scholar 

  17. Huddleston, H., D. Dunnihoo, P. Huddleston, III, and P. Meyers, Sr. Magnetic resonance imaging of defects in DeLancey’s vaginal support levels I, II, and III. Am. J. Obstet. Gynecol. 172(6):1778–1784, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang, Z., J. F. Witz, P. Lecomte-Grosbras, J. Dequidt, C. Duriez, M. Cosson, S. Cotin, and M. Brieu. B-spline based multi-organ detection in magnetic resonance imaging. Strain 51:235–247, 2015.

    Article  Google Scholar 

  19. Joldes, G. R., A. Wittek, and K. Miller. Real-time nonlinear finite element computations on GPU-application to neurosurgical simulation. Comp. Method Appl. Mech. Eng. 199(49):3305–3314, 2010.

    Article  Google Scholar 

  20. Kamina, P. Anatomie Clinique, Tome 4. Paris: Maloine, 2008.

    Google Scholar 

  21. Lecomte, P., J. F. Witz, M. Brieu, N. Faye, M. Cosson, and C. Rubod. Quantification of pelvic mobility on dynamic magnetic resonance images: using mechanical insight to help diagnostic of pelvic pathologies. Strain 51(4):301–310, 2015.

    Article  Google Scholar 

  22. Luo, J., L. Chen, D. Fenner, J. Ashton-Miller, and J. DeLancey. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele. Int. J. Biomech. 48(9):1580–1586, 2015.

    Article  Google Scholar 

  23. Mayeur, O., G. Lamblin, P. Lecomte, M. Brieu, C. Rubod, and M. Cosson. FE simulation for the understanding of the median cystocele prolapse occurrence. Lect. Notes Comput. Sci. 8789:220–227, 2014.

    Article  Google Scholar 

  24. Miller, K., G. R. Joldes, A. Wittek, and B. J. Doyle. A (not so) new method to compute the wall tension in abdominal aortica aneurysms. Presented at Euromech Colloqium 560, Mechanics of Biological membranes, Ascona, 2015.

  25. Miller, K., and J. Lu. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J. Mech. Behav. Biomed. 27:154–166, 2013.

    Article  Google Scholar 

  26. O’Boyle, A. L., J. D. O’Boyle, R. E. Ricks, T. H. Patience, B. Calhoun, and G. Davis. The natural history of pelvic organ support in pregnancy. Int. Urogynecol. J. Pelvic Floor Dysfunct. 14(1):46–49, 2003.

    Article  PubMed  Google Scholar 

  27. Parente, M. P. L., R. M. Natal Jorge, T. Mascarenhas, A. A. Fernandes, and J. A. C. Martins. The influence of the material properties on the biomechanical behavior of the pelvic floor muscles during vaginal delivery. Int. J. Biomech. 42(9):1301–1306, 2009.

    Article  CAS  Google Scholar 

  28. Peña, E., B. Calvo, M. A. Martínez, P. Martins, T. Mascarenhas, R. M. N. Jorge, A. Ferreira, and M. Doblare. Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. J. Biomech. Model. Mechanobiol. 9(1):35–44, 2010.

    Article  Google Scholar 

  29. Petros, P. The integral system. Cent. Eur. J Urol. 3:110–119, 2011.

    Article  Google Scholar 

  30. Rao, G. V., C. Rubod, M. Brieu, N. Bhatnagar, and M. Cosson. Experiments and FE modeling for the study of prolapsed in the pelvic system. Comp. Meth. Biomech. Biomed. Eng. 13(3):349–357, 2010.

    Article  Google Scholar 

  31. Rubod, C., M. Boukerrou, M. Brieu, C. Jean-Charles, P. Dubois, and M. Cosson. Biomechanical properties of vaginal tissue: preliminary results. Int. Urogynecol. J. 19(6):811–816, 2008.

    Article  Google Scholar 

  32. Rubod, C., M. Brieu, M. Cosson, G. Rivaux, J. C. Clay, and B. Gabriel. Biomechanical properties of human pelvic organs. J. Urol. 79(4):1346–1354, 2012.

    Google Scholar 

  33. Samuelsson, E., F. Victor, G. Tibblin, and K. Svardsudd. Signs of genital prolapse in a Swedish population of women 20 to 59 years of age and possible related factors. Am. J. Obstet. Gynecol. 180:299–305, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Sanches, P. R. S., D. P. Silva, A. F. Muller, A. P. Schmidt, J. G. L. Ramos, and P. Nohama. Vaginal probe transducer: characterization and measurement of pelvic-floor strength. Int. J. Biomech. 42(15):2466–2471, 2009.

    Article  Google Scholar 

  35. Vallet, A., J. F. Witz, M. Brieu, C. Rubob, and M. Cosson. Simulation of pelvic mobility: top ology optimization of ligamentous system. Comp. Meth. Biomech. Biomed. Eng. 14(1):159–163, 2011.

    Google Scholar 

  36. Wittek, A., T. Hawkins, and K. Miller. On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mech. 8(1):77–84, 2008.

    Article  Google Scholar 

  37. Yeoh, O. H. Some forms of the strain energy function for rubber. Rubber Chem. Tech. 66(5):754–771, 1993.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of UNF3S (Online French-Speaking University for Health and Sport Sciences). Karol Miller acknowledges the financial support of FNR Luxembourg Intermobility Program.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Brieu.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayeur, O., Witz, JF., Lecomte, P. et al. Influence of Geometry and Mechanical Properties on the Accuracy of Patient-Specific Simulation of Women Pelvic Floor. Ann Biomed Eng 44, 202–212 (2016). https://doi.org/10.1007/s10439-015-1401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1401-9

Keywords

Navigation