Skip to main content
Log in

Compliance Measurements of the Upper Airway in Pediatric Down Syndrome Sleep Apnea Patients

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Compliance of soft tissue and muscle supporting the upper airway are two of several factors contributing to pharyngeal airway collapse. We present a novel, minimally invasive method of estimating regional variations in pharyngeal elasticity. Magnetic resonance images for pediatric sleep apnea patients with Down syndrome [9.5 ± 4.3 years (mean age ± standard deviation)] were analyzed to segment airways corresponding to baseline (no mask pressure) and two positive pressures. A three dimensional map was created to evaluate axial and circumferential variation in radial displacements of the airway, dilated by the positive pressures. The displacements were then normalized with respect to the appropriate transmural pressure and radius of an equivalent circle to obtain a measure of airway compliance. The resulting elasticity maps indicated the least and most compliant regions of the pharynx. Airway stiffness of the most compliant region [403 ± 204 (mean ± standard deviation) Pa] decreased with severity of obstructive sleep apnea. The non-linear response of the airway wall to continuous positive airway pressure was patient specific and varied between anatomical locations. We identified two distinct elasticity phenotypes. Patient phenotyping based on airway elasticity can potentially assist clinical practitioners in decision making on the treatments needed to improve airway patency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ayappa, I., and D. M. Rapoport. The upper airway in sleep: physiology of the pharynx. Sleep Med. Rev. 7:9–33, 2003.

    Article  PubMed  Google Scholar 

  2. Barrera, J. E. Sleep magnetic resonance imaging: dynamic characteristics of the airway during sleep in obstructive sleep apnea syndrome. Laryngoscope 121:1327–1335, 2011.

    Article  PubMed  Google Scholar 

  3. Bilston, L. E., and S. C. Gandevia. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and obstructive sleep apnea. J. Appl. Physiol. 116:314–324, 2014.

    Article  CAS  PubMed  Google Scholar 

  4. Chan, J., J. C. Edman, and P. J. Koltai. Obstructive sleep apnea in children. Am. Fam. Physician 69:1147–1154, 2004.

    PubMed  Google Scholar 

  5. Corey, J. P., A. Gungor, X. Liu, R. Nelson, and J. Fredberg. Normative standards for nasal cross-sectional areas by race as measured by acoustic rhinometry. Otolaryngol. Head Neck Surg. 119:389–393, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. Elad, D., R. D. Kamm, and A. H. Shapiro. Tube law for the intrapulmonary airway. J. Appl. Physiol. 65:7–13, 1988.

    CAS  PubMed  Google Scholar 

  7. Epstein, L. J., D. Kristo, P. J. Strollo, Jr, N. Friedman, A. Malhotra, S. P. Patil, K. Ramar, R. Rogers, R. J. Schwab, E. M. Weaver, and M. D. Weinstein. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 5:263–276, 2009.

    PubMed  Google Scholar 

  8. Ferreira, A. M., V. Clemente, D. Gozal, A. Gomes, C. Pissarra, H. César, I. Coelho, C. F. Silva, and M. H. P. Azevedo. Snoring in Portuguese primary school children. Pediatrics 106:e64, 2000.

    Article  CAS  PubMed  Google Scholar 

  9. Fleck, R. J., M. Mahmoud, K. McConnell, S. R. Shott, E. Gutmark, and R. S. Amin. An adverse effect of positive airway pressure on the upper airway documented with magnetic resonance imaging. JAMA Otolaryngol. Head Neck Surg. 139:636–638, 2013.

    Article  PubMed  Google Scholar 

  10. Fouke, J. M., A. D. Wolin, K. P. Strohl, and G. M. Galbraith. Elastic characteristics of the airway wall. J. Appl. Physiol. 66:962–967, 1989.

    CAS  PubMed  Google Scholar 

  11. Greenleaf, J. F., M. Fatemi, and M. Insana. Selected methods for imaging elastic properties of biological tissue. Annu. Rev. Biomed. Eng. 5:57–78, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Ingrande, J., and H. J. M. Lemmens. Dose adjustment of anaesthetics in the morbidly obese. Br. J. Anaesth. 105:i16–i23, 2010.

    Article  CAS  PubMed  Google Scholar 

  13. Isono, S., D. L. Morrison, S. H. Launois, T. R. Feroah, W. A. Whitelaw, and J. E. Remmers. Static mechanics of the velopharynx of patients with obstructive sleep apnea. J. Appl. Physiol. 75:148–154, 1993.

    CAS  PubMed  Google Scholar 

  14. Isono, S., J. E. Remmers, A. Tanaka, Y. Sho, J. Sato, and T. Nishino. Anatomy of pharynx in patients with obstructive sleep apnea and in normal subjects. J. Appl. Physiol. 82:1319–1326, 1997.

    CAS  PubMed  Google Scholar 

  15. Issa, F. G., and C. E. Sullivan. Upper airway closing pressures in obstructive sleep apnea. J. Appl. Physiol. 57:520–527, 1984.

    CAS  PubMed  Google Scholar 

  16. Kairaitis, K., R. Parikh, R. Stavrinou, S. Garlick, J. P. Kirkness, J. R. Wheatley, and T. C. Amis. Upper airway extraluminal tissue pressure fluctuations during breathing in rabbits. J. Appl. Physiol. 95:1560–1566, 2003.

    Article  PubMed  Google Scholar 

  17. Kamal, I. Acoustic pharyngometry patterns of snoring and obstructive sleep apnea patients. Otolaryngol. Head Neck Surg. 130:58–66, 2004.

    Article  PubMed  Google Scholar 

  18. Kamm, R. D. Airway wall mechanics. Annu. Rev. Biomed. Eng. 1:47–72, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S. M., T. M. McCulloch, and K. Rim. Comparison of viscoelastic properties of the pharyngeal tissue: human and canine. Dysphagia 14:8–16, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, J., J. K. Udupa, D. Odhnera, J. M. McDonough, and R. Arens. System for upper airway segmentation and measurement with MR imaging and fuzzy connectedness. Acad. Radiol. 10:13–24, 2003.

    Article  CAS  PubMed  Google Scholar 

  21. Louis, B., G. Glass, B. Kresen, and J. Fredberg. Airway area by acoustic reflection: the two-microphone method. J. Biomech. Eng. 115:278–285, 1993.

    Article  CAS  PubMed  Google Scholar 

  22. Mahmoud, M., J. Gunter, L. F. Donnelly, Y. Wang, T. G. Nick, and S. Sadhasivam. A comparison of dexmedetomidine with propofol for magnetic resonance imaging sleep studies in children. Anesth. Analg. 109:745–753, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Mahmoud, M., D. Jung, S. Salisbury, J. McAuliffe, J. Gunter, M. Patio, L. F. Donnelly, and R. Fleck. Effect of increasing depth of dexmedetomidine and propofol anesthesia on upper airway morphology in children and adolescents with obstructive sleep apnea. J. Clin. Anesth. 25:529–541, 2013.

    Article  CAS  PubMed  Google Scholar 

  24. Mihaescu, M., G. Mylavarapu, E. J. Gutmark, and N. B. Powell. Large Eddy Simulation of the pharyngeal airflow associated with Obstructive Sleep Apnea Syndrome at pre and post-surgical treatment. J. Biomech. 44:2221–2228, 2011.

    Article  PubMed  Google Scholar 

  25. Montazeri, A., E. Giannouli, and Z. Moussavi. Assessment of obstructive sleep apnea and its severity during wakefulness. Ann. Biomed. Eng. 40:916–924, 2012.

    Article  PubMed  Google Scholar 

  26. Mylavarapu, G., M. Mihaescu, L. Fuchs, G. Papatziamos, and E. Gutmark. Planning human upper airway surgery using computational fluid dynamics. J. Biomech. 46:1979–1986, 2013.

    Article  PubMed  Google Scholar 

  27. Nelson, L. E., J. Lu, T. Guo, C. B. Saper, N. P. Franks, and M. Maze. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 98:428–436, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Ng, A., T. Koh, E. Baey, and K. Puvanendran. Role of upper airway dimensions in snore production: acoustical and perceptual findings. Ann. Biomed. Eng. 37:1807–1817, 2009.

    Article  PubMed  Google Scholar 

  29. Patil, S. P., N. M. Punjabi, H. Schneider, C. P. O’Donnell, P. L. Smith, and A. R. Schwartz. A simplified method for measuring critical pressures during sleep in the clinical setting. Am. J. Resp. Crit. Care 170:86–93, 2004.

    Article  Google Scholar 

  30. Pham, D. L., C. Xu, and J. L. Prince. Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2:315–337, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Ruehland, W. R., P. D. Rochford, F. J. O’Donoghue, R. J. Pierce, P. Singh, and A. T. Thornton. The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index. Sleep 32:150–157, 2009.

    PubMed  PubMed Central  Google Scholar 

  32. Schwab, R. J., K. B. Gupta, W. B. Gefter, L. J. Metzger, E. A. Hoffman, and A. I. Pack. Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls. Am. J. Resp. Crit. Care 152:1673–1689, 1995.

    Article  CAS  Google Scholar 

  33. Schwartz, A. R., P. L. Smith, R. A. Wise, A. R. Gold, and S. Permutt. Induction of upper airway occlusion in sleeping individuals with subatmospheric nasal pressure. J. Appl. Physiol. 64:535–542, 1988.

    CAS  PubMed  Google Scholar 

  34. Shepp, L. A., and B. F. Logan. The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21:21–43, 1974.

    Article  Google Scholar 

  35. Shott, S. R., R. Amin, B. Chini, C. Heubi, S. Hotze, and R. Akers. Obstructive sleep apnea: should all children with down syndrome be tested? Arch. Otolaryngol. Head Neck Surg. 132:432–436, 2006.

    Article  PubMed  Google Scholar 

  36. Smith, P. L., R. A. Wise, A. R. Gold, A. R. Schwartz, and S. Permutt. Upper airway pressure-flow relationships in obstructive sleep apnea. J. Appl. Physiol. 64:789–795, 1988.

    CAS  PubMed  Google Scholar 

  37. Subramaniam, D. R., G. Mylavarapu, J. Chen, R. J. Fleck, R. S. Amin, S. R. Shott, and E. J. Gutmark. Patient-specific identification of upper-airway tissue compliance using medical image analysis. In: American Thoracic Society 2014 International Conference B66. Novel and Traditional Lung Function Assessment, American Thoracic Society, 2014, p. A3564.

  38. Weissheimer, A., L. M. Menezes, G. T. Sameshima, R. Enciso, J. Pham, and D. Grauer. Imaging software accuracy for 3-dimensional analysis of the upper airway. Am. J. Orthod. Dentofacial Orthop. 142:801–813, 2012.

    Article  PubMed  Google Scholar 

  39. Yadollahi, A., A. Montazeri, A. Azarbarzin, and Z. Moussavi. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea. Ann. Biomed. Eng. 41:537–546, 2013.

    Article  PubMed  Google Scholar 

  40. Young, T., M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 328:1230–1235, 1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health Grant RO1HL105206-01. The authors would like to thank Dr. Jie Chen for useful discussions and Dr. Mohamed A. Mahmoud for his contributions to the MRI sleep studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephraim J. Gutmark.

Additional information

Associate Editor Zahra Moussavi oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniam, D.R., Mylavarapu, G., McConnell, K. et al. Compliance Measurements of the Upper Airway in Pediatric Down Syndrome Sleep Apnea Patients. Ann Biomed Eng 44, 873–885 (2016). https://doi.org/10.1007/s10439-015-1392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1392-6

Keywords

Navigation