Annals of Biomedical Engineering

, Volume 44, Issue 2, pp 523–535 | Cite as

Coronary Stent Materials and Coatings: A Technology and Performance Update

  • Barry O’Brien
  • Haroon ZafarEmail author
  • Ahmad Ibrahim
  • Junaid Zafar
  • Faisal Sharif
Medical Stents: State of the Art and Future Directions


This paper reviews the current state of the art for coronary stent materials and surface coatings, with an emphasis on new technologies that followed on from first-generation bare metal and drug-eluting stents. These developments have been driven mainly by the need to improve long term outcomes, including late stent thrombosis. Biodegradable drug-eluting coatings aim to address the long term effects of residual durable polymer after drug elution; the SYNERGY, BioMatrix, and Nobori stents are all promising devices in this category, with minimal polymer through the use of abluminal coatings. Textured stent surfaces have been used to attached drug directly, without polymer; the Yukon Choice and BioFreedom stents have some promising data in this category, while a hydroxyapatite textured surface has had less success. The use of drug-filled reservoirs looked promising initially but the NEVO device has experienced both technical and commercial set-backs. However this approach may eventually make it to market if trials with the Drug-Filled Stent prove to be successful. Non-pharmacological coatings such as silicon carbide, carbon, and titanium–nitride-oxide are also proving to have potential to provide better performance than BMS, without some of the longer term issues associated with DES. In terms of biological coatings, the Genous stent which promotes attachment of endothelial progenitor cells has made good progress while gene-eluting stents still have some practical challenges to overcome. Perhaps the most advancement has been in the field of biodegradable stents. The BVS PLLA device is now seeing increasing clinical use in many complex indications while magnesium stents continue to make steady advancements.


Stents Metallic Polymeric Coatings Biodegradable Abluminal 



We thank the Health Service Executive (Ireland) that provides all of Ireland’s public health services in hospitals and communities across the country.

Conflict of interest

We declare that there is no conflict of interest for any author.


  1. 1.
    Abizaid, A., and J. R. Costa. New drug-eluting stents: an overview on biodegradable and polymer-free next-generation stent systems. Circ. Cardiovasc. Interv. 3:384–393, 2010.CrossRefPubMedGoogle Scholar
  2. 2.
    Basalus, M., K. Tandjung, A. Van Apeldoorn, M. J. K. Ankone, and C. Von Birgelen. Effect of oversized partial postdilation on coatings of contemporary durable polymer-based drug-eluting stents. A scanning electron microscopy study. J. Interv. Cardiol. 24:149–161, 2011.CrossRefPubMedGoogle Scholar
  3. 3.
    Beijk, M., M. Klomp, N. van Geloven, K. T. Koch, J. P. S. Henriques, J. Baan, M. M. Vis, J. G. P. Tijssen, J. J. Piek, and R. J. de Winter. Two-year follow-up of the genous endothelial progenitor capturing cell capturing stent versus the taxus liberte stent in patients with de novo coronary artery lesions with a risk of restenosis. Catheter. Cardiovasc. Interv. 78:189–195, 2011.CrossRefPubMedGoogle Scholar
  4. 4.
    Beijk, M., M. Klomp, N. Verouden, N. van Geloven, K. T. Koch, J. P. S. Henriques, J. Baan, M. M. Vis, E. Scheunhage, J. J. Piek, J. G. P. Tijssen, and R. J. de Winter. Genous™ endothelial progenitor cell capturing stent vs the Taxus Liberte stent in patients with de novo coronary lesions with a high-risk of coronary restenosis: a randomized, single-centred pilot study. Eur. Heart J. 31:1055–1064, 2010.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Berlin, T., E. Rozenbaum, J. Arbel, O. Reges, J. Erel, I. Shetboun, M. Leibovitch, and M. Mosseri. Six- and twelve-month clinical outcomes after implantation of prokinetic BMS in patients with acute coronary syndrome. J. Interv. Cardiol. 23:377–381, 2010.CrossRefPubMedGoogle Scholar
  6. 6.
    Biosensors Press Release. BioFreedom™ FIM Trial Demonstrates Comparable Long-Term Safety and Efficacy to Conventional Drug-Eluting Stent, November 10th, 2011.Google Scholar
  7. 7.
    Biosensors Press Release. Initial Patient Enrolled in BioFreedom USA: First Major American Trial for Biosensors BioFreedom Stent—Polymer-Free, Shorter DAPT, September 4th, 2014.Google Scholar
  8. 8.
    Biotronik Press Release. BIOTRONIK Advances Clinical Evaluation of Latest Generation DREAMS, World’s First Bioabsorbable Magnesium Scaffold, February 19th, 2015.Google Scholar
  9. 9.
    Biotronik Press Release. BIOTRONIK Announces Completion of Patient Enrollment in BIOFLOW-IV Study Evaluating Safety and Efficacy of Orsiro, February 4th, 2015.Google Scholar
  10. 10.
    Biotronik Press Release. Biotronik announces first patients treated in BIOFLOW II clinical study comparing ORSIRO hybrid drug-eluting stent to Abbott’s Xience Prime, July 13th, 2011.Google Scholar
  11. 11.
    Boston Scientific Corp Press Release. Boston Scientific SYNERGY™ Stent Demonstrates Comparable Safety and Effectiveness Outcomes Versus PROMUS Element™ Platinum Chromium Stent, November 11th, 2011.Google Scholar
  12. 12.
    Brophy, J. M., P. Belisle, and L. Joseph. Evidence for use of coronary stents. A hierarchical bayesian meta-analysis. Ann. Intern. Med. 138:777–786, 2003.CrossRefPubMedGoogle Scholar
  13. 13.
    Cassese, S., G. De Luca, B. Villari, S. Berti, P. Bellone, A. Alfieri, A. Montinaro, G. Quaranta, P. Marraccini, and F. Piscione. Reduced antiplatelet therapy after drug-eluting stenting: multicenter janus Flex Carbostent implantation with short dual antiplatelet treatment for 2 or 6 months—MATRIX study. Catheter. Cardiovasc. Interv. 80:408–416, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Chavarri, M. V., A. Bethencourt, E. Pinar, A. Gomez, J. F. Portales, F. Pomar, I. Calvo, J. R. Lopez Minguez, R. Valdesuso, J. Moreu, A. Martinez, and W. Nammas. Titanium-nitride-oxide-coated stents multicenter registry in diaBEtic patienTs: the TIBET registry. Heart Vessels 27:151–158, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Cordis announces discontinuation of NEVO sirolimus-eluting coronary stent. Company to focus on areas of significant patient need in cardiovascular disease. Cordis Press Release, June 15th, 2011.Google Scholar
  16. 16.
    Costa, J. R., A. Abizaid, R. Costa, F. Feres, L. F. Tanajura, A. Abizaid, G. Maldonado, R. Staico, D. Siqueira, A. Sousa, R. Bonan, and J. E. Sousa. 1-year results of the hydroxyapatite polymer-free sirolimus-eluting stent for the treatment of single de novo coronary lesions. J. Am. Coll. Cardiol. Interv. 2:422–427, 2009.CrossRefGoogle Scholar
  17. 17.
    Costa, J. R., B. A. Oliveira, A. Abizaid, R. Costa, M. Perin, A. Abizaid, D. Chamié, L. F. Tanajura, A. Sousa, and J. E. M. R. Sousa. Clinical, angiographic, and intravascular ultrasound results of the VestaSync II trial. Catheter. Cardiovasc. Interv. 84:1073–1079, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Desch, S., D. Schloma, S. Möbius-Winkler, S. Erbs, S. Gielen, A. Linke, J. Yu, B. Lauer, K. Kleinertz, W. Danschel, G. Schuler, and H. Thiele. Randomized comparison of a polymer-free sirolimus-eluting stent versus a polymer-based paclitaxel-eluting stent in patients with diabetes mellitus. J. Am. Coll. Cardiol. Interv. 4:452–459, 2011.CrossRefGoogle Scholar
  19. 19.
    Erbel, R., C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F. R. Eberli, P. Erne, M. Haude, B. Heublin, M. Harrigan, C. Ilsley, D. Boese, J. Koolen, T. F. Luescher, N. Weissman, and R. Waksman. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents; a prospective non-randomized multi-centre trial. Lancet 369:1869–1875, 2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Felix, C., B. Everaert, R. Diletti, N. Van Mieghem, J. Daemen, M. Valgimigli, P. P. de Jaegere, F. Zijlstra, E. Regar, C. Simsek, Y. Onuma, and R. J. M. van Geuns. Current status of clinically available bioresorbable scaffolds in percutaneous coronary interventions. Neth. Heart J. 23:153–160, 2015.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Finn, A. V., M. Joner, G. Nakazawa, F. Kolodgie, J. Newell, M. C. John, H. K. Gold, and R. Virmani. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 115:2435–2441, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Granada, J. F., and J. W. Moses. Assessing the durability of durable stent polymers: will they pass the test of time? J. Interv. Cardiol. 24:162–164, 2011.CrossRefPubMedGoogle Scholar
  23. 23.
    Grube, E., J. Schofer, K. E. Hauptmann, G. Nickenig, N. Curzen, D. J. Allocco, and K. D. Dawkins. A novel paclitaxel-eluting stent with an ultrathin abluminal biodegradable polymer. J. Am. Coll. Cardiol. Interv. 3:431–438, 2010.CrossRefGoogle Scholar
  24. 24.
    Guagliumi, G., V. Sirbu, G. Musumeci, H. G. Bezerra, A. Aprile, H. Kyono, L. Fiocca, A. Matiashvili, N. Lortkipanidze, A. Vassileva, J. J. Popma, D. J. Allocco, K. D. Dawkins, O. Valsecchi, and M. A. Costa. Strut coverage and vessel wall response to a new-generation paclitaxel-eluting stent with an ultrathin biodegradable abluminal polymer. Circ. Cardiovasc. Interv. 3:367–375, 2010.CrossRefPubMedGoogle Scholar
  25. 25.
    Gutiérrez-Chico, J. L., P. Jüni, H. M. García-García, E. Regar, E. Nuesch, F. Borgia, W. J. van der Giessen, S. Davies, R. J. van Geuns, G. G. Secco, S. Meis, S. Windecker, P. W. Serruys, and C. di Mario. Long-term tissue coverage of a biodegradable polylactide polymer-coated biolimus-eluting stent: comparative sequential assessment with optical coherence tomography until complete resorption of the polymer. Am. Heart J. 162:922–931, 2011.CrossRefPubMedGoogle Scholar
  26. 26.
    Hanratty, C. G., and S. J. Walsh. Longitudinal compression: a “new” complication with modern coronary stent platforms—time to think beyond deliverability. EuroIntervention 7:872–877, 2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Haude, M. Two-Year Clinical Data and Multi-modality Imaging Results up to 1-year Follow-Up of the BIOSOLVE-I Study with the Paclitaxel-Eluting Bioabsorbable Magnesium Scaffold (DREAMS). Paris: EuroPCR, 2013.Google Scholar
  28. 28.
    Hermawan H, Mantovani D. New generation of medical implants: metallic biodegradable coronary stent. In: International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering, Indonesia, November 8–9, 2011.Google Scholar
  29. 29.
    Hermawan, H., and D. Mantovani. Process of prototyping coronary stent from biodegradable Fe-Mn alloys. Acta Biomater. 9:8585–8592, 2013.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson, T. W., Y. X. Wu, C. Herdeg, A. Baumbach, A. C. Newby, K. R. Karsch, and M. Oberhoff. Stent-based delivery of tissue inhibitor metalloproteinase-3 adenovirus inhibits neointimal formation in porcine coronary arteries. Arterioscler. Thromb. Vasc. 25:754–759, 2005.CrossRefGoogle Scholar
  31. 31.
    Joner, M., A. V. Finn, A. Farb, E. K. Mont, F. D. Kolodgie, E. Ladich, R. Kutys, K. Skorija, H. K. Gold, and R. Virmani. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J. Am. Coll. Cardiol. 48:193–202, 2006.CrossRefPubMedGoogle Scholar
  32. 32.
    Kadota, K., T. Muramatsu, M. Iwabuchi, S. Saito, Y. Hayashi, Y. Ikari, S. Nanto, K. Fujii, N. Inoue, A. Namiki, T. Kimura, and K. Mitsudo. Randomized comparison of the nobori Biolimus A9-eluting stent with the sirolimus-eluting stent in patients with stenosis in native coronary arteries. Catheter. Cardiovasc. Interv. 80:789–796, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Karjalainen, P. P., A. Ylitalo, J. K. Airaksinen, and W. Nammas. Five-year clinical outcome of titanium-nitride-oxide-coated bioactive stent implantation in a real-world population. J. Interv. Cardiol. 24:1–8, 2011.CrossRefPubMedGoogle Scholar
  34. 34.
    Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schuhlen, F. J. Neumann, M. Fleckenstein, C. Pfafferott, M. Seyfarth, and A. Schomig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.CrossRefPubMedGoogle Scholar
  35. 35.
    Kereiakes, D. J., L. A. Cannon, R. L. Feldman, J. J. Popma, R. Magorien, R. Whitbourn, I. M. Dauber, A. C. Rabinowitz, M. W. Ball, B. Bertolet, A. Kabour, M. C. Foster, J. C. Wang, P. Underwood, and K. D. Dawkins. Clinical and angiographic outcomes after treatment of de novo coronary stenoses with a novel platinum chromium thin-strut stent. J. Am. Coll. Cardiol. 56:264–271, 2010.CrossRefPubMedGoogle Scholar
  36. 36.
    King, L., R. A. Byrne, J. Mehilli, A. Schömig, A. Kastrati, and J. Pache. Five-year clinical outcomes for a polymer-free sirolimus-eluting stent versus a permanent polymer paclitaxel-eluting stent. Catheter. Cardiovasc. Interv. 81:E23–E28, 2013.CrossRefPubMedGoogle Scholar
  37. 37.
    Koster, R., D. Vieluf, M. Kiehn, M. Sommerauer, J. Kaehler, S. Baldus, T. Meinertz, and C. W. Hamm. Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 365:1895–1897, 2000.CrossRefGoogle Scholar
  38. 38.
    Kovandaivelu, K., R. Swaminathan, W. J. Gibson, V. B. Kolachalama, K. L. Nguyen-Ehrenreich, V. L. Giddings, L. Coleman, G. K. Wong, and E. R. Edelman. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 123:1400–1409, 2011.CrossRefGoogle Scholar
  39. 39.
    Krucoff, M. W., D. J. Kereiakes, J. L. Petersen, R. Mehran, V. Hasselblad, A. J. Lansky, P. J. Fitzgerald, J. Garg, M. A. Turco, C. A. Simonton, S. Verheye, C. L. Dubois, R. Gammon, W. B. Batchelor, C. D. O’Shaughnessy, J. B. Hermiller, J. Schofer, M. Buchbinder, and W. Wijns. A novel bioresorbable polymer paclitaxel-eluting stent for the treatment of single and multivessel coronary disease. J. Am. Coll. Cardiol. 51:1543–1552, 2008.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuramitsu, S., S. Sonodo, H. Yokoi, M. Iwabuchi, Y. Nishizaki, T. Shinozaki, T. Domei, M. Hyodo, K. Inoue, S. Shirai, K. Ando, and M. Nobuyoshi. Long-term cornary arterial response to biodegradable polymer biolimus-eluting stents in comparison with durable polymer sirolimus-eluting stents and bare-metal stents: five-year follow-up optical coherence tomorgraphy study. Atherosclerosis 237:23–29, 2014.CrossRefPubMedGoogle Scholar
  41. 41.
    Kwok, O. H. Stent “Concertina”: stent design does matter. J. Invasive Cardiol. 25(6):E114–E119, 2013.PubMedGoogle Scholar
  42. 42.
    Larsen, K., C. Cheng, D. Tempel, S. Parker, S. Yazdani, W. K. den Dekker, J. H. Houtgraaf, R. De Jong, S. Swager-ten Hoor, E. Ligtenberg, S. R. Hanson, S. Rowland, F. Kolodgie, P. W. Serruys, R. Virmani, and H. J. Duckers. Capture of circulatory endothelial progenitor cells and accelerated re-endothelialization of a bio-engineered stent in human ex vivo shunt and rabbit denudation model. Eur. Heart J. 33:120–128, 2012.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Mauri, L., W. Hsieh, J. M. Massaro, K. K. L. Ho, R. D’Agostino, and D. E. Cutlip. Stent thrombosis in randomized clinical trials of drug-eluting stents. N. Engl. J. Med. 356:1020–1029, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Medtronic Press Release. Medtronic to initiate clinical study of Drug-Filled Stent following successful preclinical results, March 14th, 2015.Google Scholar
  45. 45.
    Mehilli, J., A. Kastrati, R. Wessely, A. Dibra, J. Hausleiter, B. Jaschke, J. Dirschinger, and A. Schomig. Randomized trial of a non-polymer based rapamycin-eluting stent versus a polymer-based paclitaxel-eluting stent for the reduction of late Lumen loss. Circulation 113:273–279, 2006.CrossRefPubMedGoogle Scholar
  46. 46.
    Mehran, R., U. Baber, P. G. Steg, C. Ariti, G. Weisz, B. Witzenbichler, T. D. Henry, A. S. Kini, T. Stuckey, D. J. Cohen, P. B. Berger, I. Iakovou, G. Dangas, R. Waksman, D. Antoniucci, S. Sartori, M. W. Krucoff, J. B. Hermiller, F. Shawl, C. M. Gibson, A. Chieffo, M. Alu, D. J. Moliterno, A. Colombo, and S. Pocock. Cessation of dual antiplatelet treatment and cardiac events after percutaneous coronary intervention (PARIS): 2 year results from a prospective observational study. Lancet 382:1714–1722, 2013.CrossRefPubMedGoogle Scholar
  47. 47.
    Migliorini, A., R. Valenti, G. Moschi, G. Parodi, G. Cerisano, P. Buonamici, N. Carrabba, and D. Antoniucci. Predictor of stent thrombosis in patients treated with turbostratic carbon-coated stent implantation for acute myocardial infarction. J. Interv. Cardiol. 23:554–559, 2010.CrossRefPubMedGoogle Scholar
  48. 48.
    Moravej, M., and D. Mantovani. Biodegradable metals for cardiovascular stent applications: interests and new opportunities. Int. J. Mol. Sci. 12:4250–4270, 2011.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Mortier, P., and M. De Beule. Stent design back in the picture: an engineering perspective on longitudinal stent compression. EuroIntervention 7:773–775, 2011.CrossRefPubMedGoogle Scholar
  50. 50.
    Nakazawa, G. Stent thrombosis of drug eluting stent: pathological perspective. J. Cardiol. 58:84–91, 2011.CrossRefPubMedGoogle Scholar
  51. 51.
    O’Brien, B., and W. Carroll. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 5:945–958, 2009.CrossRefPubMedGoogle Scholar
  52. 52.
    Onuma, Y., and P. W. Serruys. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization. Circulation 123:779–797, 2011.CrossRefPubMedGoogle Scholar
  53. 53.
    Onuma, Y., P. W. Serruys, J. Gomez, B. de Bruyne, D. Dudek, L. Thuesen, P. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, H. Garcia-Garcia, and J. A. Ormiston. Comparison of in-vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent. Catheter. Cardiovasc. Interv. 78:3–12, 2011.CrossRefPubMedGoogle Scholar
  54. 54.
    OrbusNeich Press Release. OrbusNeich Introduces the Combo Dual Therapy Stent at TCT 2011, Nov 10th, 2011.Google Scholar
  55. 55.
    Ormiston, J. A., A. Abizaid, J. Spertus, J. Fajadet, L. Mauri, J. Schofer, S. Verheye, J. Dens, L. Thuesen, C. Dubois, R. Hoffmann, W. Wijns, P. J. Fitzgerald, J. J. Popma, N. Macours, A. Cebrian, H. P. Stoll, C. Rogers, and C. Spaulding. Six-month results of the NEVO RES-ELUTION I (NEVO RES I) trial. Circ. Cardiovasc. Interv. 3:556–564, 2010.CrossRefPubMedGoogle Scholar
  56. 56.
    Ormiston, J. A., P. W. Serruys, Y. Onuma, R. J. van Geuns, B. de Bruyne, D. Dudek, L. Thuesen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, R. Rapoza, and H. M. Garcia-Garcia. First serial assessment at 6 months and 2 years for the second generation of absorb everolimus-eluting bioresorbable vascular scaffold. Circ. Cardiovasc. Interv. 5:620–632, 2012.CrossRefPubMedGoogle Scholar
  57. 57.
    Pache, J., A. Kastrati, J. Mehilli, H. Schuhlen, F. Dotzer, J. Hausleiter, M. Fleckenstein, F. J. Neumann, U. Sattelberger, C. Schmitt, M. Muller, J. Dirschinger, and A. Schomig. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1283–1288, 2003.CrossRefPubMedGoogle Scholar
  58. 58.
    Park, K. W. A randomized comparison of platinum chromium-based everolimus-eluting stents versus cobalt chromium-based zotarolimus-eluting stents in all-comers receiving percutaneous coronary intervention. J. Am. Coll. Cardiol. 63:2805–2816, 2014.CrossRefPubMedGoogle Scholar
  59. 59.
    Peuster, M., C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962, 2006.CrossRefPubMedGoogle Scholar
  60. 60.
    Pilgrim, T., L. Raeber, A. Limacher, L. Loeffel, P. Wenaweser, S. Cook, J. C. Stauffer, M. Togni, R. Vogel, A. Garachemani, A. Moschovitis, A. A. Khattab, C. Seiler, B. Meier, P. Juni, and C. Windecker. Comparison of titanium-nitride-oxide-coated stents with zotarolimus-eluting stents for coronary revascularization. J. Am. Coll. Cardiol. Interv. 4:672–682, 2011.CrossRefGoogle Scholar
  61. 61.
    Prabhu, S., T. Schikorr, T. Mahmoud, J. Jacobs, A. Potgieter, and C. Simonton. Engineering assessment of the longitudinal compression behaviour of contemporary coronary stents. EuroIntervention 8:275–281, 2012.CrossRefPubMedGoogle Scholar
  62. 62.
    Prunotto, M., C. Vignolini, V. Lolli, A. Black, S. Gaggianesi, A. Santarelli, and M. Galloni. Short-, mid-, and long-term effects of a polymer-free tacrolimus-eluting stent in a porcine coronary model. J. Biomed. Mater. Res. A 88:872–879, 2009.CrossRefPubMedGoogle Scholar
  63. 63.
    REVA Medical Press Release. REVA releases initial clinical results from FANTOM scaffold, May 21st, 2015.Google Scholar
  64. 64.
    Ruef, J., H. Störger, F. Schwarz, and J. Haase. Comparison of a polymer-free rapamycin-eluting stent (YUKON) with a polymer-based paclitaxel-eluting stent (TAXUS) in real world coronary artery lesions. Catheter. Cardiovasc. Interv. 71:333–339, 2008.CrossRefPubMedGoogle Scholar
  65. 65.
    Saito, T., S. Hokomito, S. Oshima, K. Noda, Y. Kojyo, and K. Matsunaga. Metal allergic reaction in chronic-refractory in-stent restenosis. Cardiovasc. Revasc. Med. 10:17–22, 2009.CrossRefPubMedGoogle Scholar
  66. 66.
    Schinhammer, N., A. C. Hänzi, J. F. Löffler, and P. J. Uggowitzer. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 6:1705–1713, 2010.CrossRefPubMedGoogle Scholar
  67. 67.
    Serruys, P. W., Y. Onuma, D. Dudek, P. C. Smits, J. Koolen, B. Chevalier, B. de Bruyne, L. Thuesen, D. McClean, R. J. van Geuns, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, K. Sudhir, H. M. Garcia-Garcia, and J. A. Ormiston. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis. J. Am. Coll. Cardiol. 58:1578–1588, 2011.CrossRefPubMedGoogle Scholar
  68. 68.
    Sharif, F., S. Hynes, R. Cooney, L. Howard, J. McMahon, K. Daly, J. Crowley, and T. O’Brien. Gene eluting stents: delivery of adenovirus mediated endothelial nitric oxide synthase to the blood vessel wall accelerates re-endothelialization and inhibits restenosis in rabbit iliac arteries. Mol. Ther. 16:1674–1680, 2008.CrossRefPubMedGoogle Scholar
  69. 69.
    Sharif, F., S. O. Hynes, K. McCullagh, S. Ganley, U. Geiser, P. McHugh, J. Crowley, F. Barry, and T. O’Brien. Gene-eluting stents: non-viral, liposome-based gene delivery of eNOS to the blood vessel wall in vivo results in enhanced endothelialisation but does not reduce restenosis in a hypercholesterolemic model. Gene Ther. 19:321–328, 2012.CrossRefPubMedGoogle Scholar
  70. 70.
    Sharif, F., S. Hynes, J. McMahon, R. Cooney, S. Conroy, P. Dockery, G. Duffy, K. Daly, J. Crowley, J. S. Bartlett, and T. O’Brien. Gene eluting stents: a comparison of adenoviral and adeno-associated viral gene-delivery to the blood vessel wall in vivo. Hum. Gene Ther. 17:741–750, 2006.CrossRefPubMedGoogle Scholar
  71. 71.
    Shiratori, Y., S. Brugaletta, L. Allvarez-Contreras, Y. Azpeitia, N. Ospino, S. Gaido, A. Delahanty, A. Santos, V. Martin-Yuste, M. Masotti, P. W. Serruys, S. Windecker, and M. Sabaté. One-year head to head comparison of the neointimal response between sirolimus eluting stent with reservoir technology and everolimus eluting stent. Catheter. Cardiovasc. Interv. 82:428–436, 2013.CrossRefGoogle Scholar
  72. 72.
    Siller-Matula, J. M., I. Tentzeris, B. Vogel, S. Schacherl, R. Jarai, A. Geppert, G. Unger, and K. Huber. Tacrolimus-eluting carbon-coated stents versus sirolimus-eluting stents for prevention of symptom-driven clinical end points. Clin. Res. Cardiol. 99:645–650, 2010.CrossRefPubMedGoogle Scholar
  73. 73.
    Stone, G. W., P. S. Teirstein, I. T. Meredith, B. Farah, C. L. Dubois, R. L. Feldman, J. Dens, N. Hagiwara, D. J. Allocco, and K. D. Dawkins. A prospective, randomized evaluation of a novel everolimus-eluting coronary stent. J. Am. Coll. Cardiol. 57:1700–1708, 2011.CrossRefPubMedGoogle Scholar
  74. 74.
    Tada, N., R. Virmani, G. Grant, L. Bartlett, A. Black, C. Clavijo, U. Christians, R. Betts, D. Savage, S. H. Su, J. Shulze, and S. Kar. Polymer-free Biolimus A9-coated stent demonstrates more sustained intimal inhibition, improved healing, and reduced inflammation compared with a polymer-coated sirolimus-eluting cypher stent in a porcine model. Circ. Cardiovasc. Interv. 3:174–183, 2010.CrossRefPubMedGoogle Scholar
  75. 75.
    Tamai, H., K. Igaki, E. Kyo, K. Kosuga, A. Kawashima, S. Matsui, H. Komori, T. Tsuji, S. Motohara, and H. Uehata. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404, 2000.CrossRefPubMedGoogle Scholar
  76. 76.
    Unverdorben, M., B. Sippel, R. Degenhardt, K. Sattler, R. Fries, B. Abt, E. Wagner, H. Koehler, G. Daemgen, M. Scholz, H. Ibrahim, K. H. Tews, B. Hennen, H. K. Berthold, and C. Vallbracht. Comparison of a silicon-carbide coated stent versus a non-coated stent in human beings. Am. Heart J. 145:e17, 2003.CrossRefPubMedGoogle Scholar
  77. 77.
    Waksman, R. Update on Absorbable Magnesium Stent. Tel Aviv: Innovation in Cardiovascular Interventions, 2009.Google Scholar
  78. 78.
    Waksman, R., R. Pakala, R. Baffour, R. Seabron, D. Hellinga, R. Chan, S. H. Su, F. Kolodgie, and R. Virmani. In vivo comparison of a polymer-free Biolimus A9-eluting stent with a biodegradable polymer-based Biolimus A9 eluting stent and a bare metal stent in balloon denuded and radiated hypercholesterolemic rabbit iliac arteries. Catheter. Cardiovasc. Interv. 80:429–436, 2012.CrossRefPubMedGoogle Scholar
  79. 79.
    Walter, D. H., M. Cejna, L. Diaz-Sandoval, S. Willis, P. W. Stratford, A. B. Tietz, R. Kirchmair, M. Silver, C. Curry, A. Wecker, Y. S. Yoon, R. Heidenreich, A. Hanley, M. Kearney, F. O. Tio, P. Kuenzler, J. M. Isner, and D. W. Losordo. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 110:36–45, 2004.CrossRefPubMedGoogle Scholar
  80. 80.
    Windecker, S., I. Mayer, G. De Pasquale, W. Maier, O. Dirsch, P. De Groot, Y. P. Wu, G. Noll, B. Leskosek, B. Meier, and O. M. Hess. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 104:928–933, 2001.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Barry O’Brien
    • 1
  • Haroon Zafar
    • 2
    Email author
  • Ahmad Ibrahim
    • 3
  • Junaid Zafar
    • 4
  • Faisal Sharif
    • 3
    • 5
    • 6
    • 7
  1. 1.Biomedical Engineering, School of Engineering & InformaticsNational University of Ireland (NUI)GalwayIreland
  2. 2.School of PhysicsNUI, GalwayGalwayIreland
  3. 3.Department of CardiologyUniversity Hospital GalwayGalwayIreland
  4. 4.Faculty of EngineeringGovt College UniversityLahorePakistan
  5. 5.HRB Clinical Research FacilityGalwayIreland
  6. 6.Regenerative Medicine InstituteNUIGalwayIreland
  7. 7.BioInnovateGalwayIreland

Personalised recommendations