Skip to main content
Log in

An Experimental and Computational Investigation of Bone Formation in Mechanically Loaded Trabecular Bone Explants

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Understanding how bone marrow multipotent stromal cells (MSCs) contribute to new bone formation and remodeling in vivo is of principal importance for informing the development of effective bone tissue engineering strategies in vitro. However, the precise in situ stimuli that MSCs experience have not been fully established. The shear stress generated within the bone marrow of physiologically loaded samples has never been determined, but could be playing an important role in the generation of sufficient stimulus for MSCs to undergo osteogenic differentiation. In this study fluid structure interaction (FSI) computational models were used in conjunction with a bioreactor which physiologically compresses explanted trabecular bone samples to determine whether MSCs can be directly stimulated by mechanical cues within the bone marrow. Experimentally loaded samples were found to have greater osteogenic activity, as verified by bone histomorphometry, compared to control static samples. FSI models demonstrated a linear relationship between increasing shear stress and decreasing bone volume. The FSI models demonstrated that bone strain, not marrow shear stress, was likely the overall driving mechanical signal for new bone formation during compression. However, the shear stress generated in the models is within the range of values which has been shown previously to generate an osteogenic response in MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546–553, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bakker, A. D., M. Joldersma, J. Klein-Nulend, and E. H. Burger. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am. J. Physiol. Endocrinol. Metab. 285:E608–E613, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Birmingham, E., J. A. Grogan, G. L. Niebur, L. M. McNamara, and P. E. McHugh. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann. Biomed. Eng. 41:814–826, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Birmingham, E., T. C. Kreipke, E. B. Dolan, T. R. Coughlin, P. Owens, L. M. McNamara, G. L. Niebur, and P. E. McHugh. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann. Biomed. Eng. 2014. doi:10.1007/s10439-014-1135-0.

    PubMed  Google Scholar 

  5. Birmingham, E., G. L. Niebur, P. E. McHugh, G. Shaw, F. P. Barry, and L. M. McNamara. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell Mater. 23:13–27, 2012.

    CAS  PubMed  Google Scholar 

  6. Bonewald, L. F. Osteocytes as dynamic multifunctional cells. Ann. N. Y. Acad. Sci. 1116:281–290, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.

    Article  CAS  PubMed  Google Scholar 

  8. Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.

    Article  CAS  PubMed  Google Scholar 

  9. Carter, D. R., D. P. Fyhrie, and R. T. Whalen. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomech. 20:785–794, 1987.

    Article  CAS  PubMed  Google Scholar 

  10. Cartmell, S. H., B. D. Porter, A. J. García, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Case, N., B. Sen, J. A. Thomas, M. Styner, Z. Xie, C. R. Jacobs, and J. Rubin. Steady and oscillatory fluid flows produce a similar osteogenic phenotype. Calcif. Tissue Int. 88:189–197, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, J. C., and C. R. Jacobs. Mechanically induced osteogenic lineage commitment of stem cells. Stem Cell Res. Ther. 4:107, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45:2222–2229, 2012.

    Article  PubMed  Google Scholar 

  14. David, V., A. Guignandon, A. Martin, L. Malaval, M.-H. Lafage-Proust, A. Rattner, V. Mann, B. Noble, D. B. Jones, and L. Vico. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. A 14:117–126, 2008.

    CAS  Google Scholar 

  15. Davies, C. M., D. B. Jones, M. J. Stoddart, K. Koller, E. Smith, C. W. Archer, and R. G. Richards. Mechanically loaded ex vivo bone culture system “Zetos”: systems and culture preparation. Eur. Cell Mater. 11:57–75, 2006; (discussion 75, 2006).

    CAS  PubMed  Google Scholar 

  16. Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model. Mechanobiol. 7:191–202, 2008.

    Article  CAS  PubMed  Google Scholar 

  17. Endres, S., M. Kratz, S. Wunsch, and D. B. Jones. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders. J. Musculoskelet. Neuronal Interact. 9:173–183, 2009.

    CAS  PubMed  Google Scholar 

  18. Fritton, S. P., K. J. McLeod, and C. T. Rubin. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33:317–325, 2000.

    Article  CAS  PubMed  Google Scholar 

  19. Frost, H. M. Bone, “mass” and the “mechanostat”: a proposal. Anat. Rec. 219:1–9, 1987.

    Article  CAS  PubMed  Google Scholar 

  20. Garman, R., G. Gaudette, L.-R. Donahue, C. Rubin, and S. Judex. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J. Orthop. Res. 25:732–740, 2007.

    Article  PubMed  Google Scholar 

  21. Govey, P. M., A. E. Loiselle, and H. J. Donahue. Biophysical regulation of stem cell differentiation. Curr. Osteoporos. Rep. 11:83–91, 2013.

    Article  PubMed  Google Scholar 

  22. Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978–1991, 2008.

    Article  PubMed  Google Scholar 

  23. Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.

    Article  CAS  PubMed  Google Scholar 

  24. Jones, D. B., E. Broeckmann, T. Pohl, and E. L. Smith. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur. Cell Mater. 5:48–59, 2003; (discussion 59–60, 2003).

    CAS  PubMed  Google Scholar 

  25. Kajimura, D., R. Paone, J. J. Mann, and G. Karsenty. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo. Mol. Metab. 3:770–777, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keaveny, T. M., E. F. Morgan, G. L. Niebur, and O. C. Yeh. Biomechanics of trabecular bone. Annu. Rev. Biomed. Eng. 3:307–333, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. Lambers, F. M., K. Koch, G. Kuhn, D. Ruffoni, C. Weigt, F. A. Schulte, and R. Müller. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone. doi:10.1016/j.bone.2013.04.016.

  28. Lukas, C., D. Ruffoni, F. M. Lambers, F. A. Schulte, G. Kuhn, P. Kollmannsberger, R. Weinkamer, and R. Müller. Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56:55–60, 2013.

    Article  PubMed  Google Scholar 

  29. Mann, V., C. Huber, G. Kogianni, D. Jones, and B. Noble. The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J. Musculoskelet. Neuronal Interact. 6:408–417, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Metzger, T. A., T. C. Kreipke, T. J. Vaughan, L. McNamara, and G. L. Niebur. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J. Biomech. Eng. 2014. doi:10.1115/1.4028985.

    Google Scholar 

  31. Mohsin, S., F. J. O’Brien, and T. C. Lee. Microcracks in compact bone: a three-dimensional view. J. Anat. 209:119–124, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mosley, J. R. Osteoporosis and bone functional adaptation: mechanobiological regulation of bone architecture in growing and adult bone, a review. J. Rehabil. Res. Dev. 37:189–199, 2000.

    CAS  PubMed  Google Scholar 

  33. Nauman, E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, and D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J. Appl. Physiol. 90:1849–1854, 2001.

    CAS  PubMed  Google Scholar 

  34. Parfitt, A. M., M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche, P. J. Meunier, S. M. Ott, and R. R. Recker. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J. Bone Miner. Res. 2:595–610, 1987.

    Article  CAS  PubMed  Google Scholar 

  35. DS SIMULIA. Abaqus 6.12 theory manual. Providence, RI: DS SIMULIA Corp., 2012.

  36. Qin, Y.-X., and H. Lam. Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation. J. Biomech. 42:140–145, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10:12–24, 2010.

    CAS  PubMed  Google Scholar 

  38. Recker, R. R., D. B. Kimmel, A. M. Parfitt, K. M. Davies, N. Keshawarz, and S. Hinders. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J. Bone Miner. Res. 3:133–144, 1988.

    Article  CAS  PubMed  Google Scholar 

  39. Sandino, C., J. A. Planell, and D. Lacroix. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41:1005–1014, 2008.

    Article  CAS  PubMed  Google Scholar 

  40. Schaffler, M. B., W.-Y. Cheung, R. Majeska, and O. Kennedy. Osteocytes: master orchestrators of bone. Calcif. Tissue Int. 2013. doi:10.1007/s00223-013-9790-y.

    PubMed  PubMed Central  Google Scholar 

  41. Schulte, F. A., A. Zwahlen, F. M. Lambers, G. Kuhn, D. Ruffoni, D. Betts, D. J. Webster, and R. Müller. Strain-adaptive in silico modeling of bone adaptation—a computer simulation validated by in vivo micro-computed tomography data. Bone 52:485–492, 2013.

    Article  PubMed  Google Scholar 

  42. Vaughan, T. J., M. Voisin, G. L. Niebur, and L. M. McNamara. Multiscale modeling of trabecular bone marrow: understanding the micromechanical environment of mesenchymal stem cells during osteoporosis. J. Biomech. Eng. 2015. doi:10.1115/1.4028986.

  43. Verbruggen, S. W., T. J. Vaughan, and L. M. McNamara. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J. R. Soc. Interface 9:2735–2744, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vivanco, J., S. Garcia, H. L. Ploeg, G. Alvarez, D. Cullen, and E. L. Smith. Apparent elastic modulus of ex vivo trabecular bovine bone increases with dynamic loading. Proc. Inst. Mech. Eng. H 227:904–912, 2013.

    Article  PubMed  Google Scholar 

  45. Webster, D., E. Wasserman, M. Ehrbar, F. Weber, I. Bab, and R. Müller. Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype. Biomech. Model. Mechanobiol. 9:737–747, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Irish Research Council, under the EMBARK program, U.S. National Science Foundation grant CMMI 1100207, Science Foundation Ireland under the Short Term Travel Fellowship and the ORS under the Collaborative Exchange Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Birmingham.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birmingham, E., Niebur, G.L., McNamara, L.M. et al. An Experimental and Computational Investigation of Bone Formation in Mechanically Loaded Trabecular Bone Explants. Ann Biomed Eng 44, 1191–1203 (2016). https://doi.org/10.1007/s10439-015-1378-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1378-4

Keywords

Navigation