Skip to main content

Advertisement

Log in

Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin–Biotin Binding System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Highly porous and interconnected scaffolds were fabricated using calcium phosphate glass (CPG) for bone tissue engineering. An avidin–biotin binding system was used to improve osteoblast-like cell adhesion to the scaffold. The scaffolds had open macro- and micro-scale pores, and continuous struts without cracks or defects. Scaffolds prepared using a mixture (amorphous and crystalline CPG) were stronger than amorphous group and crystalline group. Cell adhesion assays showed that more cells adhered, with increasing cell seeding efficiency to the avidin-adsorbed scaffolds, and that cell attachment to the highly porous scaffolds significantly differed between avidin-adsorbed scaffolds and other scaffolds. Proliferation was also significantly higher for avidin-adsorbed scaffolds. Osteoblastic differentiation of MG-63 cells was observed at 3 days, and MG-63 cells in direct contact with avidin-adsorbed scaffolds were positive for type I collagen, osteopontin, and alkaline phosphatase gene expression. Osteocalcin expression was observed in the avidin-adsorbed scaffolds at 7 days, indicating that cell differentiation in avidin-adsorbed scaffolds occurred faster than the other scaffolds. Thus, these CPG scaffolds have excellent biological properties suitable for use in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anamelechi, C. C., G. A. Truskey, and W. M. Reichert. Mylar (TM) and Teflon-AF (TM) as cell culture substrates for studying endothelial cell adhesion. Biomaterials 26(34):6887–6896, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade, J. D., and V. Hlady. Protein adsorption and materials biocompatibility—a tutorial review and suggested hypotheses. Adv. Polym. Sci. 79:1–63, 1986.

    Article  CAS  Google Scholar 

  3. Aubin, J. E., F. Liu, L. Malaval, and A. K. Gupta. Osteoblast and chondroblast differentiation. Bone 17(2):S77–S83, 1995.

    Article  Google Scholar 

  4. Barriga, A., P. Diaz-de-Rada, J. L. Barroso, M. Alfonso, M. Lamata, S. Hernaez, J. L. Beguiristain, M. San-Julian, and C. Villas. Frozen cancellous bone allografts: positive cultures of implanted grafts in posterior fusions of the spine. Eur. Spine J. 13(2):152–156, 2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bhat, V. D., B. Klitzman, K. Koger, G. A. Truskey, and W. M. Reichert. Improving endothelial cell adhesion to vascular graft surfaces: clinical need and strategies. J. Biomater. Sci. Polym. E 9(11):1117–1135, 1998.

    Article  CAS  Google Scholar 

  6. Bogdanov, A. A., L. V. Gordeeva, B. A. Baibakov, L. B. Margolis, and V. P. Torchilin. Restoration of adhesive potentials of ehrlich ascites-carcinoma cells by modification of plasma-membrane. J. Cell. Physiol. 147(1):182–190, 1991.

    Article  CAS  PubMed  Google Scholar 

  7. Brauer, D. S., C. Russel, S. Vogt, J. Weisser, and M. Schnabelrauch. Fabrication and in vitro characterization of porous biodegradable composites based on phosphate glasses and oligolactide-containing polymer networks. J. Biomed. Mater. Res. A 80A(2):410–420, 2007.

    Article  CAS  Google Scholar 

  8. Chen, R., and J. A. Hunt. Biomimetic materials processing for tissue-engineering processes. J. Mater. Chem. 17(38):3974–3979, 2007.

    Article  CAS  Google Scholar 

  9. Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88(1):39–48, 1997.

    Article  CAS  PubMed  Google Scholar 

  10. Faull, R. J., N. L. Kovach, J. M. Harlan, and M. H. Ginsberg. Affinity modulation of integrin alpha-5-beta-1—regulation of the functional-response by soluble fibronectin. J. Cell Biol. 121(1):155–162, 1993.

    Article  CAS  PubMed  Google Scholar 

  11. Goulet, J. A., L. E. Senunas, G. L. DeSilva, and M. L. Greenfield. Autogenous iliac crest bone graft. Complications and functional assessment. Clin. Orthop. Relat. Res. 339:76–81, 1997.

    Article  PubMed  Google Scholar 

  12. Hing, K. A., L. E. Wilson, and T. Buckland. Comparative performance of three ceramic bone graft substitutes. Spine J. 7(4):475–490, 2007.

    Article  PubMed  Google Scholar 

  13. Hong, M. H., S. M. Kim, K. M. Kim, and Y. K. Lee. Development and in vitro assays of porous calcium polyphosphate granules. Ceram. Int. 39(5):4991–4997, 2013.

    Article  CAS  Google Scholar 

  14. Hong, M. H., S. M. Kim, J. Y. Om, N. Kwon, and Y. K. Lee. Seeding cells on calcium phosphate scaffolds using hydrogel enhanced osteoblast proliferation and differentiation. Ann. Biomed. Eng. 42(7):1424–1435, 2014.

    Article  PubMed  Google Scholar 

  15. Hynes, R. O. Integrins—versatility, modulation, and signaling in cell-adhesion. Cell 69(1):11–25, 1992.

    Article  CAS  PubMed  Google Scholar 

  16. Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36(1):17–28, 1997.

    Article  CAS  PubMed  Google Scholar 

  17. Ishaug-Riley, S. L., G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19(15):1405–1412, 1998.

    Article  CAS  PubMed  Google Scholar 

  18. Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Kasuga, T. Bioactive calcium pyrophosphate glasses and glass-ceramics. Acta Biomater. 1(1):55–64, 2005.

    Article  PubMed  Google Scholar 

  20. Kim, M. C., B. H. Lee, K. N. Kim, K. M. Kim, and Y. K. Lee. Relation between structure and mechanical properties of porous scaffold using calcium phosphate glass–ceramics. Korean J. Dent. Mater. 37(3):211–217, 2010.

    Google Scholar 

  21. Kim, T., C. Hwang, D. Gwoo, H. Park, and B. K. Ryu. Effects of substitution of K2O for Na2O on the bioactivity of CaO-Na2O-SiO2-P2O5 glasses. Electron. Mater. Lett. 8(5):541–544, 2012.

    Article  CAS  Google Scholar 

  22. Kojima, N., T. Matsuo, and Y. Sakai. Rapid hepatic cell attachment onto biodegradable polymer surfaces without toxicity using an avidin–biotin binding system. Biomaterials 27(28):4904–4910, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Langer, R., and J. P. Vacanti. Tissue engineering. Science 260(5110):920–926, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Lian, J. B., and G. S. Stein. Concepts of osteoblast growth and differentiation—basis for modulation of bone cell-development and tissue formation. Crit. Rev. Oral Biol. Med. 3(3):269–305, 1992.

    CAS  PubMed  Google Scholar 

  25. Lincks, J., B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, and Z. Schwartz. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 19(23):2219–2232, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Ma, P. X. Scaffolds for tissue fabrication. Mater. Today 7(5):30–40, 2004.

    Article  CAS  Google Scholar 

  27. Navarro, M., S. del Valle, S. Martinez, S. Zeppetelli, L. Ambrosio, J. A. Planell, and M. P. Ginebra. New macroporous calcium phosphate glass ceramic for guided bone regeneration. Biomaterials 25(18):4233–4241, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Tsai, W. B., and M. C. Wang. Effect of an avidin–biotin binding system on chondrocyte adhesion, growth and gene expression. Biomaterials 26(16):3141–3151, 2005.

    Article  CAS  PubMed  Google Scholar 

  29. Vacanti, J. P., and C. A. Vacanti. Chapter 1—The history and scope of tissue engineering. In: Principles of Tissue Engineering 4th, edited by R. Lanza, R. Langer, and J. Vacanti. Boston: Academic Press, 2014, pp. 3–8.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government MSIP (No. 2008-0062283). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014M3A7B4051594). This work was supported (in part) by the Yonsei University Yonsei-SNU Collaborative Research Fund of 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Keun Lee.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Min-Chul Kim and Min-Ho Hong have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MC., Hong, MH., Lee, BH. et al. Bone Tissue Engineering by Using Calcium Phosphate Glass Scaffolds and the Avidin–Biotin Binding System. Ann Biomed Eng 43, 3004–3014 (2015). https://doi.org/10.1007/s10439-015-1347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1347-y

Key terms

Navigation