Broom, N. D., and C. A. Poole. A functional morphological-study of the tidemark region of articular-cartilage maintained in a non-viable physiological condition. J. Anat. 135:65–82, 1982.
PubMed Central
CAS
PubMed
Google Scholar
Bryant, S. J., R. J. Bender, K. L. Durand, and K. S. Anseth. Encapsulating Chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.
CAS
Article
PubMed
Google Scholar
Bullough, P., and J. Goodfellow. The significance of the fine structure of articular cartilage. J. Bone Joint Surg. Br. 50:852–857, 1968.
CAS
PubMed
Google Scholar
Burdick, J. A., and K. S. Anseth. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323, 2002.
CAS
Article
PubMed
Google Scholar
Caliari, S. R., and B. A. Harley. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals. Tissue Eng. Part A 20:2463–2472, 2014.
PubMed Central
CAS
Article
PubMed
Google Scholar
Caliari, S. R., and B. A. Harley. Structural and biochemical modification of a collagen scaffold to selectively enhance MSC tenogenic, chondrogenic, and osteogenic differentiation. Adv. Healthc. Mater. 3:1086–1096, 2014.
PubMed Central
CAS
Article
PubMed
Google Scholar
Caliari, S. R., D. W. Weisgerber, M. A. Ramirez, D. O. Kelkhoff, and B. A. Harley. The influence of collagen-glycosaminoglycan scaffold relative density and microstructural anisotropy on tenocyte bioactivity and transcriptomic stability. J. Mech. Behav. Biomed. Mater. 11:27–40, 2012.
PubMed Central
CAS
Article
PubMed
Google Scholar
Caliari, S. R., L. C. Mozdzen, O. Armitage, M. L. Oyen, and B. A. Harley. Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. J. Biomed. Mater. Res. A 102:917–927, 2014.
PubMed Central
Article
PubMed
Google Scholar
Caliari, S. R., D. W. Weisgerber, W. K. Grier, Z. Mahmassani, M. D. Boppart, and B. A. Harley. Collagen scaffolds incorporating coincident gradations of instructive structural and biochemical cues for osteotendinous junction engineering. Adv. Healthc. Mater. 4:831–837, 2015.
Campbell, S. E., V. L. Ferguson, and D. C. Hurley. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation. Acta Biomater. 8:4389–4396, 2012.
CAS
Article
PubMed
Google Scholar
Carter, D. R., G. S. Beaupré, M. Wong, R. L. Smith, T. P. Andriacchi, and D. J. Schurman. The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. Relat. Res.® 427:S69–S77, 2004.
Article
Google Scholar
Chawla, K. K. Composite Materials Science and Engineering. New York: Springer, 2012.
Google Scholar
Coburn, J., M. Gibson, P. A. Bandalini, C. Laird, H. Q. Mao, L. Moroni, D. Seliktar, and J. Elisseeff. Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Struct. Syst. 7:213–222, 2011.
PubMed Central
Article
PubMed
Google Scholar
Coburn, J. M., M. Gibson, S. Monagle, Z. Patterson, and J. H. Elisseeff. Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proc. Natl. Acad. Sci. USA 109:10012–10017, 2012.
PubMed Central
CAS
Article
PubMed
Google Scholar
Cui, W., Q. Wang, G. Chen, S. Zhou, Q. Chang, Q. Zuo, K. Ren, and W. Fan. Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs. J. Biosci. Bioeng. 111:493–500, 2011.
CAS
Article
PubMed
Google Scholar
Duan, P., Z. Pan, L. Cao, Y. He, H. Wang, Z. Qu, J. Dong, and J. Ding. The effects of pore size in bilayered poly(lactide-co-glycolide) scaffolds on restoring osteochondral defects in rabbits. J. Biomed. Mater. Res. A 102:180–192, 2013.
Article
PubMed
Google Scholar
Farrell, E., F. J. O’Brien, P. Doyle, J. Fischer, I. Yannas, B. A. Harley, B. O’Connell, P. J. Prendergast, and V. A. Campbell. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng. 12:459–468, 2006.
CAS
Article
PubMed
Google Scholar
Ferguson, V. L., A. J. Bushby, and A. Boyde. Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203:191–202, 2003.
PubMed Central
Article
PubMed
Google Scholar
Galperin, A., R. A. Oldinski, S. J. Florczyk, J. D. Bryers, M. Q. Zhang, and B. D. Ratner. Integrated bi-layered scaffold for osteochondral tissue engineering. Adv. Healthc. Mater. 2:872–883, 2013.
PubMed Central
CAS
Article
PubMed
Google Scholar
Gotterbarm, T., W. Richter, M. Jung, S. Berardi Vilei, P. Mainil-Varlet, T. Yamashita, and S. J. Breusch. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials 27:3387–3395, 2006.
CAS
Article
PubMed
Google Scholar
Guo, X., J. Liao, H. Park, A. Saraf, R. M. Raphael, Y. Tabata, F. K. Kasper, and A. G. Mikos. Effects of TGF-beta 3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater. 6:2920–2931, 2010.
PubMed Central
CAS
Article
PubMed
Google Scholar
Halpin Affdl, J. C., and J. L. Kardos. The Halpin-Tsai equations. Polymer Sci. Eng. 16:344–352, 1976.
Article
Google Scholar
Harley, B. A., J. H. Leung, E. Silva, and L. J. Gibson. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater. 3:463–474, 2007.
CAS
Article
PubMed
Google Scholar
Harley, B. A., A. K. Lynn, Z. Wissner-Gross, W. Bonfield, I. V. Yannas, and L. J. Gibson. Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. Part A 92A:1078–1093, 2010.
CAS
Google Scholar
Hashin, Z., and S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11:127–140, 1963.
Article
Google Scholar
Hortensius, R. A., and B. A. Harley. The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials 34:7645–7652, 2013.
PubMed Central
CAS
Article
PubMed
Google Scholar
Im, G. I., J. H. Ahn, S. Y. Kim, B. S. Choi, and S. W. Lee. A hyaluronate-atelocollagen/beta-tricalcium phosphate-hydroxyapatite biphasic scaffold for the repair of osteochondral defects: a porcine study. Tissue Eng. Part A 16:1189–1200, 2010.
CAS
Article
PubMed
Google Scholar
Jiang, C. C., H. Chiang, C. J. Liao, Y. J. Lin, T. F. Kuo, C. S. Shieh, Y. Y. Huang, and R. S. Tuan. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J. Orthop. Res. 25:1277–1290, 2007.
CAS
Article
PubMed
Google Scholar
Jin, G. Z., J. J. Kim, J. H. Park, S. J. Seo, J. H. Kim, E. J. Lee, and H. W. Kim. Biphasic nanofibrous constructs with seeded cell layers for osteochondral repair. Tissue Eng. Part C Methods 20:895–904, 2014.
CAS
Article
PubMed
Google Scholar
Kandel, R. A., M. Grynpas, R. Pilliar, J. Lee, J. Wang, S. Waldman, P. Zalzal, M. Hurtig, and C. B. S. T. Team. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials 27:4120–4131, 2006.
CAS
Article
PubMed
Google Scholar
Khanarian, N. T., N. M. Haney, R. A. Burga, and H. H. Lu. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33:5247–5258, 2012.
PubMed Central
CAS
Article
PubMed
Google Scholar
Khanarian, N. T., J. Jiang, L. Q. Wan, V. C. Mow, and H. H. Lu. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng. Part A 18:533–545, 2012.
PubMed Central
CAS
Article
PubMed
Google Scholar
Lee, J. C., C. Pereira, X. Ren, W. Huang, D. W. Weisgerber, D. T. Yamaguchi, B. A. Harley, and T. A. Miller. Optimizing collagen scaffolds for bone engineering: effects of crosslinking and mineral content on structural contraction and osteogenesis. J. Craniofac. Sur. 2015. http://journals.lww.com/jcraniofacialsurgery/toc/publishahead.
Lin, D. C., D. I. Shreiber, E. K. Dimitriadis, and F. Horkay. Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 8:345–358, 2009.
PubMed Central
Article
PubMed
Google Scholar
Lin-Gibson, S., S. Bencherif, J. A. Cooper, S. J. Wetzel, J. M. Antonucci, B. M. Vogel, F. Horkay, and N. R. Washburn. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromolecules 5:1280–1287, 2004.
CAS
Article
PubMed
Google Scholar
Lopa, S., and H. Madry. Bioinspired Scaffolds for osteochondral regeneration. Tissue Eng. Part A 20:2052–2076, 2014.
Article
PubMed
Google Scholar
Lu, S., J. Lam, J. E. Trachtenberg, E. J. Lee, H. Seyednejad, J. J. den van Beucken, Y. Tabata, M. E. Wong, J. A. Jansen, A. G. Mikos, and F. K. Kasper. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35:8829–8839, 2014.
PubMed Central
CAS
Article
PubMed
Google Scholar
Lynn, A. K., S. M. Best, R. E. Cameron, B. A. Harley, I. V. Yannas, L. J. Gibson, and W. Bonfield. Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J. Biomed. Mater. Res. Part A 92A:1057, 2010.
CAS
Google Scholar
Mente, P. L., and J. L. Lewis. Elastic-modulus of calcified cartilage is an order of magnitude less-than that of subchondral bone. J. Orthop. Res. 12:637–647, 1994.
CAS
Article
PubMed
Google Scholar
Mohan, N., V. Gupta, B. Sridharan, A. Sutherland, and M. S. Detamore. The potential of encapsulating “raw materials” in 3D osteochondral gradient scaffolds. Biotechnol. Bioeng. 111:829–841, 2014.
PubMed Central
CAS
Article
PubMed
Google Scholar
Moutos, F. T., and F. Guilak. Composite scaffolds for cartilage tissue engineering. Biorheology 45:501–512, 2008.
PubMed Central
PubMed
Google Scholar
Nicodemus, G. D., S. C. Skaalure, and S. J. Bryant. Gel structure impacts pericellular and extracellular matrix deposition which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. Acta Biomater. 7:492–504, 2011.
PubMed Central
CAS
Article
PubMed
Google Scholar
O’Brien, F. J., B. A. Harley, I. V. Yannas, and L. Gibson. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25:1077–1086, 2004.
Article
PubMed
Google Scholar
O’Brien, F. J., B. A. Harley, I. V. Yannas, and L. J. Gibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441, 2005.
Article
PubMed
Google Scholar
Roberts, J. J., A. Earnshaw, V. L. Ferguson, and S. J. Bryant. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. B Appl. Biomater. 99:158–169, 2011.
Article
PubMed
Google Scholar
Roberts, J. J., G. D. Nicodemus, E. C. Greenwald, and S. J. Bryant. Degradation improves tissue formation in (Un)Loaded chondrocyte-laden hydrogels. Clin. Orthop. Relat. Res. 469:2725–2734, 2011.
PubMed Central
Article
PubMed
Google Scholar
Sharma, B., C. G. Williams, M. Khan, P. Manson, and J. H. Elisseeff. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast. Reconstr. Surg. 119:112–120, 2007.
CAS
Article
PubMed
Google Scholar
Sherwood, J. K., S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751, 2002.
CAS
Article
PubMed
Google Scholar
Shimomura, K., Y. Moriguchi, C. D. Murawski, H. Yoshikawa, and N. Nakamura. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng. Part B Rev. 20:463–476, 2014.
Article
Google Scholar
Steinmetz, N. J., E. A. Aisenbrey, K. K. Westbrook, H. J. Qi, and S. J. Bryant. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater. 2015. doi:10.1016/j.actbio.2015.04.015.
Vickers, S. M., L. S. Squitieri, and M. Spector. Effects of cross-linking type II collagen-GAG scaffolds on chondrogenesis in vitro: Dynamic pore reduction promotes cartilage formation. Tissue Eng. 12:1345–1355, 2006.
CAS
Article
PubMed
Google Scholar
Villanueva, I., D. S. Hauschulz, D. Mejic, and S. J. Bryant. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities. Osteoarthr. Cartil. 16:909–918, 2008.
PubMed Central
CAS
Article
PubMed
Google Scholar
Wang, D. A., C. G. Williams, F. Yang, N. Cher, H. Lee, and J. H. Elisseeff. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng. 11:201–213, 2005.
CAS
Article
PubMed
Google Scholar
Wang, X., E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. L. Kaplan. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 134:81–90, 2009.
PubMed Central
CAS
Article
PubMed
Google Scholar
Wang, Y., H. Meng, X. Yuan, J. Peng, Q. Guo, S. Lu, and A. Wang. Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering. Biomed. Eng. Online 13:80, 2014.
PubMed Central
Article
PubMed
Google Scholar
Weisgerber, D. W., D. O. Kelkhoff, S. R. Caliari, and B. A. Harley. The impact of discrete compartments of a multi-compartment collagen-GAG scaffold on overall construct biophysical properties. J. Mech. Behav. Biomed. Mater. 28:26–36, 2013.
PubMed Central
CAS
Article
PubMed
Google Scholar
Wong, M., and D. R. Carter. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 33:1–13, 2003.
CAS
Article
PubMed
Google Scholar
Yannas, I. V., E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. USA 86:933–937, 1989.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yannas, I. V., D. S. Tzeranis, B. A. Harley, and P. T. So. Biologically active collagen-based scaffolds: advances in processing and characterization. Philos. Trans. A Math. Phys. Eng. Sci. 368:2123–2139, 2010.
PubMed Central
CAS
Article
PubMed
Google Scholar
Yodmuang, S., S. L. McNamara, A. B. Nover, B. B. Mandal, M. Agarwal, T. A. Kelly, P. H. Chao, C. Hung, D. L. Kaplan, and G. Vunjak-Novakovic. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 11:27–36, 2015.
CAS
Article
PubMed
Google Scholar