Skip to main content
Log in

Structure, Mechanics, and Histology of Intraluminal Thrombi in Abdominal Aortic Aneurysms

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It has been recognized that the intraluminal thrombus (ILT) is a biologically active material contributing in the progression and rupture of abdominal aortic aneurysms (AAAs). To advance our understanding of the potential role of ILT in the natural history of AAAs, the structural, mechanical, and histological characteristics of ILTs have been studied with great interest over the past decade. Given that the ILT is evolving and changing its composition during AAA progression, attention has been paid to exploring the chemomechanical effects of ILT on the underlying wall properties. Various biomechanical and chemomechanical data, and related models have provided advanced insights into AAA pathogenesis which have served as a basis for clinical diagnosis. The goal of this review is to describe and summarize recent advances in the research of ILT found in the aorta in terms of structure, mechanics, and histology on a patient-specific basis. We point to some possible future studies which hopefully stimulate multidisciplinary research to address open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25:916–926, 1997.

    Article  CAS  PubMed  Google Scholar 

  2. Arzani, A., G. Y. Suh, R. L. Dalman, and S. C. Shadden. A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am. J. Physiol. Heart. Circ. Physiol. 307:H1786-H1795, 2014. doi:10.1152/ajpheart.00461.2014.

    Article  CAS  PubMed  Google Scholar 

  3. Ashton, J. H., J. P. Vande Geest, B. R. Simon, and D. G. Haskett. Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics. J. Biomech. 42:197–201, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Basciano, C., C. Kleinstreuer, S. Hyun, and E. A. Finol. A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms. Ann. Biomed. Eng. 39:2010–2026, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bluestein, D., K. Dumont, M. De Beule, J. Ricotta, P. Impellizzeri, B. Verhegghe et al. Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm—FSI modelling. Comput. Methods Biomech. Biomed. Eng. 12:73–81, 2009.

    Article  Google Scholar 

  6. Brown, L. C. and J. T. Powell. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann. Surg. 230:289–296, 1999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brown, E. A., R. I. Litvinov, D. E. Disher, P. K. Purohit, and J. W. Weisel. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science. 325:741–744, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Carmo, M., L. Colombo, A. Bruno, F. R. Corsi, L. Roncoroni, M. S. Cuttin et al. Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 23:543–549, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Carrell, T. W., K. G. Burnand, N. A. Booth, J. Humphries, and A. Smith. Intraluminal thrombus enhances proteolysis in abdominal aortic aneurysms. Vascular. 14:9–16, 2006.

    Article  PubMed  Google Scholar 

  10. Chen, C. Y., R. Antón, M. Y. Hung, P. Menon, E. A. Finol, and K. Pekkan. Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling. J. Biomech. Eng. 136:031001, 2014.

    Article  PubMed  Google Scholar 

  11. da Silva, E. S., A. J. Rodrigues, E. Magalhaes Castro de Tolosa, C. J. Rodrigus, G. Villas Boas do Prado, and J. C. Nakamoto. Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study. Cardiovasc. Surg. 8:526–532, 2000.

    Article  Google Scholar 

  12. Darling, R.C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. Circulation. 56 (II suppl):161–164, 1977.

    Google Scholar 

  13. Di Achille, P., G. Tellides, C. A. Figueroa, and J. D. Humphrey. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc. R. Soc. Lond. A. 470:20140163, 2014.

    Article  Google Scholar 

  14. Di Martino, E. S., S. Mantero, F. Inzoli, G. Melissano, D. Astore, R. Chiesa et al. Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur. J. Vasc. Endovasc. Surg. 15:290–299, 1998.

    Article  PubMed  Google Scholar 

  15. Dobrin, P. B. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg. Clin. North. Am. 69:687–703, 1989.

    CAS  PubMed  Google Scholar 

  16. Dobrin, P. B., W. H. Baker, and W. C. Gley. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch. Surg. 119:405–409, 1984.

    Article  CAS  PubMed  Google Scholar 

  17. Fineschi, V., E. Turillazzi, M. Neri, C. Pomara, and I. Riezzo. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci. Int. 186:22–28, 2009.

    Article  PubMed  Google Scholar 

  18. Fleming, C., E. P. Whitlock, T. L. Beil, and F. A. Lederle. Screening for abdominal aortic aneurysm: a best-evidence systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 142:203–211, 2005.

    Article  PubMed  Google Scholar 

  19. Folkesson, M., A. Silveira, P. Eriksson, and J. Swedenborg. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis. 218:294–299, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Furie, B. and B. C. Furie. In vivo thrombus formation. J. Thromb. Haemost. 5 (Suppl 1):12–17, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48:179–188, 2008.

    Article  PubMed  Google Scholar 

  22. Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. Surg. 40:176–185, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Georgakarakos, E., C. V. Ioannou, S. Volanis, Y. Papaharilaou, J. Ekaterinaris, and A. N. Katsamouris. The influence of intraluminal thrombus on abdominal aortic aneurysm wall stress. Int. Angiol. 28:325–333, 2009.

    CAS  PubMed  Google Scholar 

  24. Hans, S. S., O. Jareunpoon, M. Balasubramaniam, G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41:584–588, 2005.

    Article  PubMed  Google Scholar 

  25. Harter, L. P., B. H. Gross, R. A. Callen, and R. A. Barth. Ultrasonic evalution of abdominal aortic thrombus. J. Ultrasound Med. 1:315–318, 1982.

    CAS  PubMed  Google Scholar 

  26. Hinnen, J. W., D. J. Rixen, O. H. Koning, J. H. van Bockel, and J. F. Hamming. Development of fibrinous thrombus analogue for in-vitro abdominal aortic aneurysm studies. J. Biomech. 40:289–295, 2007.

    Article  CAS  PubMed  Google Scholar 

  27. Holmes, D. R., S. Liao, W. C. Parks, and R. W. Thompson. Medial neovascularization in abdominal aortic aneurysms: a histopathological marker of aneurysmal degeneration with pathophysiologic implications. J. Vasc. Surg. 21:761–771, 1995.

    Article  CAS  PubMed  Google Scholar 

  28. Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: Wiley, 2000.

    Google Scholar 

  29. Holzapfel, G. A., J. Tong, T. Cohnert, and P. Regitnig. Recent advances in the biomechanics of abdominal aortic aneurysms. In: ESVB 2011 New Endovascular Technologies. From Bench Test to Clinical Practice, edited by N. Chakfé, B. Durand, and W. Meichelboeck. Strasbourg: Europrot, 2011, pp. 23–40.

    Google Scholar 

  30. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  31. Holzapfel, G. A., G. Sommer, C. T. Gasser, P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  32. Humphrey, J. D. and C. A. Taylor. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Eng. 10:221–246, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Humphrey, J. D. and G. A. Holzapfel. Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45:805–814, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Inzoli, F., F. Boschetti, M. Zappa, T. Longo, and R. Fumero. Biomechanical factors in abdominal aortic aneurysm rupture. Eur. J. Vasc. Surg. 7:667–674, 1993.

    Article  CAS  PubMed  Google Scholar 

  35. Irniger, W. Histologische Altersbestimmung von Thrombosen und Embolien. Virchows Arch. Path. Anat. 336:220–237, 1963.

    Article  Google Scholar 

  36. Kamocka, M. M., J. Mu, X. Liu, N. Chen, A. Zollman, B. Sturonas-Brown et al. Two-photon intravital imaging of thrombus development. J. Biomed. Opt. 15:016020, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Karšaj, I. and J. D. Humphrey. A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology. 46:509–527, 2009.

    PubMed Central  PubMed  Google Scholar 

  38. Katz, D.J., J. C. Stanley, and G. B. Zelenock. Operative mortality rates for intact and ruptured abdominal aortic aneurysms in Michigan: an eleven-year statewide experience. J. Vasc. Surg. 19:804–817, 1994.

    Article  CAS  PubMed  Google Scholar 

  39. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38:1283–1292, 2003.

    Article  PubMed  Google Scholar 

  40. Kazi, M., C. Zhu, J. Roy, G. Paulsson-Berne, A. Hamsten, J. Swedenborg et al. Difference in matrix-degrading protease expression and activity between thrombus-free and thrombus-covered wall of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 25:1341–1346, 2005.

    Article  CAS  PubMed  Google Scholar 

  41. Koole, D., H. J. Zandvoort, A. Schoneveld, A. Vink, J. A. Vos, L. L. van den Hoogen et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 57:77–83, 2013.

    Article  PubMed  Google Scholar 

  42. Lederle, F. A., S. E. Wilson, G. R. Johnson, D. B. Reinke, F. N. Littooy, C. W. Acher et al. Immediate repair compared with surveillance of small abdominal aortic aneurysms. N. Engl. J. Med. 346:1437–1444, 2002.

    Article  PubMed  Google Scholar 

  43. Les, A.S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens et al. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38:1288–1313, 2010.

    Article  PubMed  Google Scholar 

  44. Liu, W., L. M. Jawerth, E. A. Sparks, M. R. Falvo, R. R. Hantgan, R. Superfine et al. Fibrin fibers have extraordinary extensibility and elasticity. Science. 313:634, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Maier, A., M. W. Gee, C. Reeps, H. H. Eckstein, and W. A. Wall. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech. Model Mechanobiol. 9:511–521, 2010.

    Article  CAS  PubMed  Google Scholar 

  46. Martinez-Pinna, R., J. Madrigal-Matute, C. Tarin, E. Burillo, M. Esteban-Salan, C. Pastor-Vargas et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 33:2013–2020, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Matusik, P., P. Mazur, E. Stepień, R. Pfitzner, J. Sadowski, and A. Undas. Architecture of intraluminal thrombus removed from abdominal aortic aneurysm. J. Thromb. Thrombolysis. 30:7–9, 2010.

    Article  PubMed  Google Scholar 

  48. Mower, W. R., L. J. Baraff, and J. Sneyd. Stress distributions in vascular aneurysms: factors affecting risk of aneurysm rupture. J. Surg. Res. 55:155–161, 1993.

    Article  CAS  PubMed  Google Scholar 

  49. Mower, W. R., W. J. Quinones, and S. S. Gambhir. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J. Vasc. Surg. 26:602–608, 1997.

    Article  CAS  PubMed  Google Scholar 

  50. Nicholls, S. C., J. B. Gardner, M. H. Meissner, and K. H. Johansen. Rupture in small abdominal aortic aneurysms. J. Vasc. Surg. 28:884–888, 1998.

    Article  CAS  PubMed  Google Scholar 

  51. Noel, A. A., P. Gloviczki, K. J. Cherry Jr, T. C. Bower, J. M. Panneton, G. I. Mozes et al. Ruptured abdominal aortic aneurysms: the excessive mortality rate of conventional repair. J. Vasc. Surg. 34:41–46, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. O’Leary, S. A., E. G. Kavanagh, P. A. Grace, T. M. McGloughlin, and B. J. Dolye. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: Classification of morphology and the determination of layer and region specific properties. J. Biomech. 47:1430–1437, 2014.

    Article  PubMed  Google Scholar 

  53. O’Rourke, M. J., J. P. McCullough, and S. Kelly. An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm. Proc. Inst. Mech. Eng. 226:548–564, 2012.

    Article  Google Scholar 

  54. Polzer, S., T. C. Gasser, J. Swedenborg, and J. Bursa. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 41:467–473, 2011.

    Article  CAS  PubMed  Google Scholar 

  55. Powell, J. T. and A. R. Brady. Detection, management, and prospects for the medical treatment of small abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24:241–245, 2004.

    Article  CAS  PubMed  Google Scholar 

  56. Raghavan, M. L. and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.

    Article  CAS  PubMed  Google Scholar 

  57. Salsac, A. V., S. R. Sparks, and J. C. Lasheras. Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Ann. Vasc. Surg. 18:14–21, 2004.

    Article  PubMed  Google Scholar 

  58. Satta, J., E. Läärä, and T. Juvonen. Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J. Vasc. Surg. 23:737–739, 1996.

    Article  CAS  PubMed  Google Scholar 

  59. Schurink, G. W. H., J. M. van Baalen, M. J. T Visser, J. H. van Bockel. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J. Vasc. Surg. 31:501–506, 2000.

    Article  CAS  PubMed  Google Scholar 

  60. Shah, P. K. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiologic paradigm in aortic aneurysm. Circulation. 96:2228–2232, 1997.

    Article  Google Scholar 

  61. Sommer, G., T. C. Gasser, P. Regitnig, M. Auer, and G. A. Holzapfel. Dissection of the human aortic media: an experimental study. J. Biomech. Eng. 130:021007, 2008

    Article  PubMed  Google Scholar 

  62. Speelman, L., G. W. H. Schurink, E. M. H. Bosboom, J. Buth, M. Breeuwer, F. N. van de Vosse et al. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J. Vasc. Surg. 51:19–26, 2010.

    Article  PubMed  Google Scholar 

  63. Stenbaek, J., B. Kalin, and J. Swedenborg. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 20:466–499, 2000.

    Article  CAS  PubMed  Google Scholar 

  64. Swedenborg, J. and P. Eriksson. The intraluminal thrombus as a source of proteolytic activity. Ann. N.Y. Acad. Sci. 1085:133–138, 2006.

    Article  CAS  PubMed  Google Scholar 

  65. Tong, J., T. Cohnert, P. Regitnig, and G. A. Holzapfel. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behavior and material modeling. Eur. J. Vasc. Endovasc. Surg. 42:207–219, 2011.

    Article  CAS  PubMed  Google Scholar 

  66. Tong, J., G. Sommer, P. Regitnig, and G. A. Holzapfel. Dissection properties and mechanical strength of tissue components in human carotid bifurcations. Ann. Biomed. Eng. 39:1703–1719, 2011.

    Article  PubMed  Google Scholar 

  67. Tong, J., A. J. Schriefl, T. Cohnert, and G. A. Holzapfel. Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 45:364–372, 2013.

    Article  CAS  PubMed  Google Scholar 

  68. Tong, J., T. Cohnert, P. Regitnig, J. Kohlbacher, R. Birner-Gruenberger, A. J. Schriefl et al. Variations of dissection properties and mass fractions with thrombus age in human abdominal aortic aneurysms. J. Biomech. 47:14–23, 2014.

    Article  CAS  PubMed  Google Scholar 

  69. Touat, Z., V. Ollivier, J. Dai, M. G. Huisse, A. Bezeaud, U. Sebbag et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am. J. Pathol. 168:1022–1030, 2010.

    Article  Google Scholar 

  70. van Dam, E. A., S. D. Dams, G. W. Peters, M. C. Rutten, G. W. Schurink, J. Buth et al. Determination of linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biorheology. 43:695–707, 2006.

    PubMed  Google Scholar 

  71. van Dam, E. A., S. D. Dams, G. W. M. Peters, M. C. M. Rutten, G. W. H Schurink, J. Buth et al. Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech. Model Mechanobiol. 7:127–137, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39:2347–2354, 2006.

    Article  PubMed  Google Scholar 

  73. Vande Geest, J. P., D. H. J. Wang, S. R. Wisniewski, M. S. Makaroun, and D. A. Vorp. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann. Biomed. Eng. 34:1098–1106, 2006.

    Article  PubMed  Google Scholar 

  74. Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Vorp, D. A., J. Gorcsan, W. A. Mandarino, and M. W. Webster. The potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a noninvasive method. Cardiovasc. Surg. 4:732–739, 1996.

    Article  CAS  PubMed  Google Scholar 

  76. Vorp, D. A., P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto, S. Ogawa et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.

    Article  CAS  PubMed  Google Scholar 

  77. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J. Biomech. Eng. 123:536–539, 2001.

    Article  CAS  PubMed  Google Scholar 

  78. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.

    Article  PubMed  Google Scholar 

  79. Weisel, J. W. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem. 112:267–276, 2004.

    Article  CAS  PubMed  Google Scholar 

  80. Weisel, J. W. Structure of fibrin: impact on clot stability. J. Thromb. Haemost. 5:116–124, 2007.

    Article  CAS  PubMed  Google Scholar 

  81. Wiernicki, I., E. Stachowska, K. Safranow, M. Cnotliwy, M. Rybicka, M. Kaczmarczyk et al. Enhanced matrix-degrading proteolytic activity within the thin thrombus-covered wall of human abdominal aortic aneurysms. Atherosclerosis. 212:161–165, 2010.

    Article  CAS  PubMed  Google Scholar 

  82. Wilson, J. S., L. Virag, P. Di Achille, I. Karšaj, and J. D. Humphrey. Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J. Biomech. Eng. 135:021011, 2013.

    Article  CAS  PubMed  Google Scholar 

  83. Wolf, Y.G., W. S. Thomas, F. J. Brennan, W. G. Goff, M. J. Sise, and E. F. Bernstein. Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J. Vasc. Surg. 20:529–535, 1994.

    Article  CAS  PubMed  Google Scholar 

  84. Xu, Z., N. Chen, M. M. Kamocka, E. D. Rosen, and M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface. 5:705–722, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard A. Holzapfel.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J., Holzapfel, G.A. Structure, Mechanics, and Histology of Intraluminal Thrombi in Abdominal Aortic Aneurysms. Ann Biomed Eng 43, 1488–1501 (2015). https://doi.org/10.1007/s10439-015-1332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1332-5

Keywords

Navigation