Annals of Biomedical Engineering

, Volume 43, Issue 10, pp 2349–2360 | Cite as

Effect of the Mitral Valve’s Anterior Leaflet on Axisymmetry of Transmitral Vortex Ring

  • Ahmad Falahatpisheh
  • Niema M. Pahlevan
  • Arash Kheradvar
Article

Abstract

The shape and formation of transmitral vortex ring are shown to be associated with diastolic function of the left ventricle (LV). Transmitral vortex ring is a flow feature that is observed to be non-axisymmetric in a healthy heart and its inherent asymmetry in the LV assists in efficient ejection of the blood during systole. This study is a first step towards understanding the effects of the mitral valve’s anterior leaflet on transmitral flow. We experimentally study a single-leaflet model of the mitral valve to investigate the effect of the anterior leaflet on the axisymmetry of the generated vortex ring based on the three-dimensional data acquired using defocusing digital particle image velocimetry. Vortex rings form downstream of a D-shaped orifice in presence or absence of the anterior leaflet in various physiological stroke ratios. The results of the statistical analysis indicate that the formed vortex ring downstream of a D-shaped orifice is markedly non-axisymmetric, and presence of the anterior leaflet improves the ring’s axisymmetry. This study suggests that the improvement of axisymmetry in presence of the anterior leaflet might be due to coupled dynamic interaction between rolling-up of the shear layer at the edges of the D-shaped orifice and the borders of the anterior leaflet. This interaction can reduce the non-uniformity in vorticity generation, which results in more axisymmetric behavior compared to the D-shaped orifice without the anterior leaflet.

Keywords

Mitral valve Anterior leaflet Non-axisymmetry Vortex ring 

Nomenclature

\(U_{0}\)

Plateau velocity of the piston

\(D\)

Equivalent diameter of the D-shaped orifice

\(L/D\)

Stroke ratio

\(\xi\)

Axisymmetry index

\(\bar{I}\)

Impulse threshold

\(\bar{I}_{ < }\)

Average of the impulses less than the impulse threshold, \(\bar{I}\)

\(\bar{I}_{ > }\)

Average of the impulses more than the impulse threshold, \(\bar{I}\)

\(N\)

Number of \(\theta\)-planes

\(\omega_{\theta }\)

Vorticity distribution in each \(\theta\)-plane

\(\text{Re}_{\Gamma }\)

Reynolds number of vortex ring

\(\Gamma_{\theta }\)

Circulation in each \(\theta\)-plane

\(\Gamma_{\theta }^{*}\)

Non-dimensional circulation in each \(\theta\)-plane

\(\overline{{\Gamma_{\theta } }}^{*}\)

Average of non-dimensional circulation in all \(\theta\)-planes

\(R_{\theta }\)

Radial vorticity centroid in each \(\theta\)-plane

\(R_{\theta }^{*}\)

Non-dimensional radial vorticity centroid in each \(\theta\)-plane

\(\overline{{R_{\theta } }}^{*}\)

Average of non-dimensional radial vorticity centroid in all \(\theta\)-planes

\(I_{\theta }\)

Impulse in each \(\theta\)-plane

\(I_{\theta }^{*}\)

Non-dimensional impulse in each \(\theta\)-plane

\(\overline{{I_{\theta } }}^{*}\)

Average of non-dimensional impulse in all \(\theta\)-planes

Supplementary material

10439_2015_1302_MOESM1_ESM.wmv (1.9 mb)
Supplementary material 1 (WMV 1944 kb)

References

  1. 1.
    Abe, H., G. Caracciolo, A. Kheradvar, G. Pedrizzetti, B. K. Khandheria, and J. Narula. Sengupta PP. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur. Heart J. Cardiovasc. Imaging 14(11):1049–1060, 2013.CrossRefPubMedGoogle Scholar
  2. 2.
    Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s Reconstructive Valve Surgery. Philadelphia: Elsevier Health Sciences, 2011.Google Scholar
  3. 3.
    Charonko, J., R. Kumar, K. Stewart, W. Little, and P. Vlachos. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41:1049–1061, 2013.CrossRefPubMedGoogle Scholar
  4. 4.
    de Vecchi, A., D. A. Nordsletten, E. W. Remme, H. Bellsham-Revell, G. Greil, J. M. Simpson, R. Razavi, and N. P. Smith. Inflow typology and ventricular geometry determine efficiency of filling in the hypoplastic left heart. Ann. Thorac. Surg. 94:1562–1569, 2012.CrossRefPubMedGoogle Scholar
  5. 5.
    Domenichini, F. Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666:506–520, 2011.CrossRefGoogle Scholar
  6. 6.
    Du, D., S. Jiang, Z. Wang, Y. Hu, and Z. He. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair. Biomed. Mater. Eng. 24:155–161, 2014.PubMedGoogle Scholar
  7. 7.
    Falahatpisheh, A., and A. Kheradvar. On axisymmetry of vortex rings. Bull. Am. Phys Soc. 59:418, 2014.Google Scholar
  8. 8.
    Falahatpisheh, A., and A. Kheradvar. Volumetric echocardiographic particle image velocimetry (v-echo-piv). Circulation. 130:A14952, 2014.Google Scholar
  9. 9.
    Falahatpisheh, A., and A. Kheradvar. A measure of axisymmetry for vortex rings. Eur. J. Mech. B. 49(Part A):264–271, 2015.CrossRefGoogle Scholar
  10. 10.
    Falahatpisheh, A., G. Pedrizzetti, and A. Kheradvar. Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields. Experiments in Fluids. 55:1848, 2014.CrossRefGoogle Scholar
  11. 11.
    Gharib, M., E. Rambod, A. Kheradvar, D. J. Sahn, and J. O. Dabiri. Optimal vortex formation as an index of cardiac health. Proc. Natl. Acad. Sci. USA 103:6305–6308, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gharib, M., E. Rambod, and K. Shariff. A universal time scale for vortex ring formation. J. Fluid Mech. 360:121–140, 1998.CrossRefGoogle Scholar
  13. 13.
    Grinstein, F. F. Vortex dynamics and entrainment in rectangular free jets. J. Fluid Mech. 437:69–101, 2001.CrossRefGoogle Scholar
  14. 14.
    Ho, C.-M., and E. Gutmark. Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet. J. Fluid Mech. 179:383–405, 1987.CrossRefGoogle Scholar
  15. 15.
    Hu, Y., L. Shi, S. Parameswaran, S. Smirnov, and Z. He. Left ventricular vortex under mitral valve edge-to-edge repair. Cardiovasc. Eng. Technol. 1:235–243, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Husain, H. S., and F. Hussain. Elliptic jets. Part 2. Dynamics of coherent structures: pairing. J. Fluid Mech. 233:439–482, 1991.CrossRefGoogle Scholar
  17. 17.
    Jiamsripong, P., M. Alharthi, A. Calleja, E. McMahon, M. Katayama, J. Westerdale, M. Milano, J. Heys, F. Mookadam, and M. Belohlavek. Impact of pericardial adhesions on diastolic function as assessed by vortex formation time, a parameter of transmitral flow efficiency. Cardiovasc. Ultrasound 8:42, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jiamsripong, P., A. M. Calleja, M. S. Alharthi, M. Dzsinich, E. M. McMahon, J. J. Heys, M. Milano, P. P. Sengupta, B. K. Khandheria, and M. Belohlavek. Impact of acute moderate elevation in left ventricular afterload on diastolic transmitral flow efficiency: analysis by vortex formation time. J. Am. Soc. Echocardiogr. 22:427–431, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kheradvar, A., R. Assadi, A. Falahatpisheh, and P. P. Sengupta. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J. Am. Soc. Echocardiogr. 25:220–227, 2012.CrossRefPubMedGoogle Scholar
  20. 20.
    Kheradvar, A., and A. Falahatpisheh. The effects of dynamic saddle annulus and leaflet length on transmitral flow pattern and leaflet stress of a bileaflet bioprosthetic mitral valve. J. Heart Valve Dis. 21:225, 2012.PubMedGoogle Scholar
  21. 21.
    Kheradvar, A., and M. Gharib. Influence of ventricular pressure drop on mitral annulus dynamics through the process of vortex ring formation. Ann. Biomed. Eng. 35:2050–2064, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Kheradvar, A., and M. Gharib. On mitral valve dynamics and its connection to early diastolic flow. Ann. Biomed. Eng. 37:1–13, 2009.CrossRefPubMedGoogle Scholar
  23. 23.
    Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:3102–3111, 2010.CrossRefGoogle Scholar
  24. 24.
    Kheradvar, A., M. Milano, and M. Gharib. Correlation between vortex ring formation and mitral annulus dynamics during ventricular rapid filling. ASAIO J. 53:8–16, 2007.CrossRefPubMedGoogle Scholar
  25. 25.
    Kheradvar, A., and G. Pedrizzetti. Vortex Formation in the Cardiovascular System. New York: Springer, 2012.CrossRefGoogle Scholar
  26. 26.
    Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Le, T. B., I. Borazjani, S. Kang, and F. Sotiropoulos. On the structure of vortex rings from inclined nozzles. J. fluid Mech. 686:451–483, 2011.CrossRefGoogle Scholar
  28. 28.
    Mangual, J. O., E. Kraigher-Krainer, A. De Luca, L. Toncelli, A. Shah, S. Solomon, G. Galanti, F. Domenichini, and G. Pedrizzetti. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 46:1611–1617, 2013.CrossRefPubMedGoogle Scholar
  29. 29.
    Markl, M., P. Kilner, and T. Ebbers. Comprehensive 4d velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13:7, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    McCarthy, K. P., L. Ring, and B. S. Rana. Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 11(10):i3–i9, 2010.CrossRefPubMedGoogle Scholar
  31. 31.
    Misfeld, M., and H.-H. Sievers. Heart valve macro- and microstructure. Philos. Trans. R. Soc. B 362:1421–1436, 2007.CrossRefGoogle Scholar
  32. 32.
    Nucifora, G., V. Delgado, M. Bertini, N. A. Marsan, N. R. Van de Veire, A. C. T. Ng, H.-M. J. Siebelink, M. J. Schalij, E. R. Holman, P. P. Sengupta, and J. J. Bax. Left ventricular muscle and fluid mechanics in acute myocardial infarction. Am. J. Cardiol. 106:1404–1409, 2010.CrossRefPubMedGoogle Scholar
  33. 33.
    Pagel, P. S., and J. A. Hudetz. Chronic pressure-overload hypertrophy attenuates vortex formation time in patients with severe aortic stenosis and preserved left ventricular systolic function undergoing aortic valve replacement. J. Cardiothorac. Vasc. Anesth. 27:660–664, 2013.CrossRefPubMedGoogle Scholar
  34. 34.
    Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, 2005.CrossRefPubMedGoogle Scholar
  35. 35.
    Pedrizzetti, G., G. La Canna, O. Alfieri, and G. Tonti. The vortex—an early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 11:545–553, 2014.CrossRefPubMedGoogle Scholar
  36. 36.
    Pereira, F., and M. Gharib. Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows. Meas. Sci. Technol. 13:683–694, 2002.CrossRefGoogle Scholar
  37. 37.
    Perloff, J. K., and W. C. Roberts. The mitral apparatus functional anatomy of mitral regurgitation. Circulation. 46:227–239, 1972.CrossRefPubMedGoogle Scholar
  38. 38.
    Poh, K. K., L. C. Lee, L. Shen, E. Chong, Y. L. Tan, P. Chai, T. C. Yeo, and M. J. Wood. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time. Eur. J. Echocardiogr. 13:385–393, 2011.Google Scholar
  39. 39.
    Salgo, I. S., J. H. Gorman, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, M. G. St John Sutton, and L. H. Edmunds. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation. 106:711–717, 2002.CrossRefPubMedGoogle Scholar
  40. 40.
    Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. Mri-based cfd analysis of flow in a human left ventricle: methodology and application to a healthy heart. Ann. Biomed. Eng. 37:503–515, 2009.CrossRefPubMedGoogle Scholar
  41. 41.
    Sengupta, P. P., G. Pedrizzetti, P. J. Kilner, A. Kheradvar, T. Ebbers, G. Tonti, A. G. Fraser, and J. Narula. Emerging trends in CV flow visualization. JACC Cardiovasc. Imaging 5:305–316, 2012.CrossRefPubMedGoogle Scholar
  42. 42.
    Van Mieghem, N. M., N. Piazza, R. H. Anderson, A. Tzikas, K. Nieman, L. E. De Laat, J. S. McGhie, M. L. Geleijnse, T. Feldman, P. W. Serruys, and P. P. de Jaegere. Anatomy of the mitral valvular complex and its implications for transcatheter interventions for mitral regurgitation. J. Am. Coll. Cardiol. 56:617–626, 2010.CrossRefPubMedGoogle Scholar
  43. 43.
    Wlezien, R., and V. Kibens. Passive control of jets with indeterminate origins. AIAA J. 24:1263–1270, 1986.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Ahmad Falahatpisheh
    • 1
    • 2
  • Niema M. Pahlevan
    • 3
    • 4
  • Arash Kheradvar
    • 1
    • 2
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California, IrvineIrvineUSA
  2. 2.Department of Biomedical EngineeringUniversity of California, IrvineIrvineUSA
  3. 3.Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Huntington Medical Research InstitutePasadenaUSA

Personalised recommendations