Annals of Biomedical Engineering

, Volume 43, Issue 10, pp 2587–2596 | Cite as

Characterisation of Elastic and Acoustic Properties of an Agar-Based Tissue Mimicking Material

  • M. P. BrewinEmail author
  • M. J. Birch
  • D. J. Mehta
  • J. W. Reeves
  • S. Shaw
  • C. Kruse
  • J. R. Whiteman
  • S. Hu
  • Z. R. Kenz
  • H. T. Banks
  • S. E. Greenwald


As a first step towards an acoustic localisation device for coronary stenosis to provide a non-invasive means of diagnosing arterial disease, measurements are reported for an agar-based tissue mimicking material (TMM) of the shear wave propagation velocity, attenuation and viscoelastic constants, together with one dimensional quasi-static elastic moduli and Poisson’s ratio. Phase velocity and attenuation coefficients, determined by generating and detecting shear waves piezo-electrically in the range 300 Hz–2 kHz, were 3.2–7.5 ms−1 and 320 dBm−1. Quasi-static Young’s modulus, shear modulus and Poisson’s ratio, obtained by compressive or shear loading of cylindrical specimens were 150–160 kPa; 54–56 kPa and 0.37–0.44. The dynamic Young’s and shear moduli, derived from fitting viscoelastic internal variables by an iterative statistical inverse solver to freely oscillating specimens were 230 and 33 kPa and the corresponding relaxation times, 0.046 and 0.036 s. The results were self-consistent, repeatable and provide baseline data required for the computational modelling of wave propagation in a phantom.


Acoustic properties Acoustic localisation Coronary artery Elastic moduli Poisson’s ratio Shear modulus Shear wave Stenosis Tissue mimicking material Viscoelasticity 



This work is supported by the Engineering and Physical Sciences Research Council (EPSRC) [EP/H011072/1 and EP/H011285/1].

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.


  1. 1.
    AIUM. Methods for specifying acoustic properties of tissue mimicking phantoms and objects, Stage I. Laurel, MD, American Institute of Ultrasound in Medicine Technical Standards Committee. 1995.Google Scholar
  2. 2.
    Arnott, S., A. Fulmer, W. E. Scott, I. C. Dea, R. Moorhouse, and D. A. Rees. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 90(2):269–284, 1974.CrossRefPubMedGoogle Scholar
  3. 3.
    Banks, H. T., S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald, and M. J. Birch. Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: methodology. J. Inverse Ill-posed Probl. 21(1):25–57, 2013.CrossRefGoogle Scholar
  4. 4.
    Banks, H. T., S. Hu, Z. R. Kenz, C. Kruse, S. Shaw, J. R. Whiteman, M. P. Brewin, S. E. Greenwald, and M. J. Birch. Model validation for a noninvasive arterial stenosis detection problem mathematical biosciences and engineering. IJNME 11(3):427–448, 2014.Google Scholar
  5. 5.
    Brewin, M. P., L. C. Pike, D. E. Rowland, and M. J. Birch. The acoustic properties, centered on 20 MHz, of an agar-based tissue-mimicking material and its temperature, frequency and age dependence. Ultrasound Med. Biol. 34(8):1292–1306, 2008.CrossRefPubMedGoogle Scholar
  6. 6.
    Brewin, M. P., P. D. Srodon, S. E. Greenwald, and M. J. Birch. Carotid atherosclerotic plaque characterisation by measurement of ultrasound sound speed in vitro at high frequency, 20 MHz. Ultrasonics 54(2):428–441, 2014.CrossRefPubMedGoogle Scholar
  7. 7.
    Browne, J. E., K. V. Ramnarine, A. J. Watson, and P. R. Hoskins. Assessment of the acoustic properties of common tissue mimicking test phantoms. Ultrasound Med. Biol. 29(7):1053–1060, 2003.CrossRefPubMedGoogle Scholar
  8. 8.
    Burlew, M. M., E. L. Madsen, J. A. Zagzebski, R. A. Banjavic, and S. W. Sum. A new ultrasound tissue-equivalent material. Radiology 134(2):517–520, 1980.CrossRefPubMedGoogle Scholar
  9. 9.
    Catheline, S., J.-L. Gennisson, G. Delon, M. Fink, R. Sinkus, S. Abouelkaram, and J. Culioli. Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J. Acoust. Soc. Am. 116(6):3734–3741, 2004.CrossRefPubMedGoogle Scholar
  10. 10.
    Catheline, S., L. Sandrin, J.-L. Gennisson, M. Tanter, and M. Fink. Ultrasound-based noninvasive shear elasticity probe for soft tissues. IEEE Ultrasonics Symp. 2:1799–1801, 2000.Google Scholar
  11. 11.
    Catheline, S., F. Wu, and M. Fink. A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J. Acoust. Soc. Am. 105(5):2941–2950, 1999.CrossRefPubMedGoogle Scholar
  12. 12.
    Couade, M., M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, A. Criton, M. Fink, and M. Tanter. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med. Biol. 36(10):1662–1676, 2010.CrossRefPubMedGoogle Scholar
  13. 13.
    Deffieux, T., G. Montaldo, and M. Fink. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans. Med. Imaging 28(3):313–322, 2009.CrossRefPubMedGoogle Scholar
  14. 14.
    Dineley, J., S. Meagher, T. L. Poepping, W. N. McDicken, and P. R. Hoskins. Design and characterisation of a wall motion phantom. Ultrasound Med. Biol. 32(9):1349–1357, 2006.CrossRefPubMedGoogle Scholar
  15. 15.
    Feng, K., and Z.-C. Shi. Mathematical Theory of Elastic Structures. New York: Springer, 1981.Google Scholar
  16. 16.
    Fromageau, J., E. Brusseau, and D. Vray. Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE-UFFC 50(10):1318–1323, 2003.CrossRefGoogle Scholar
  17. 17.
    Gennisson, J.-L., and G. Cloutier. Sol–gel transition in agar-gelatin mixtures studied with transient elastography. IEEE-UFFC 53(4):716–723, 2006.CrossRefGoogle Scholar
  18. 18.
    Glagov, S. Intimal hyperplasia, vascular modeling, and the restenosis problem. Circulation 89(6):2888–2891, 1994.CrossRefPubMedGoogle Scholar
  19. 19.
    Glozman, T., and H. Azhari. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography. J. Ultrasound Med. 29(3):387–398, 2010.CrossRefPubMedGoogle Scholar
  20. 20.
    Gray, D. E. American Institute of Physics Handbook (3rd ed.). New York: McGraw Hill, 1973.Google Scholar
  21. 21.
    Hadj Henni, A., C. Schmitt, M. É. Tremblay, M. Hamdine, M. C. Heuzey, P. Carreau, and G. Cloutier. Hyper-frequency viscoelastic spectroscopy of biomaterials. J. Mech. Behav. Biomed. Mater. 4(7):1115–1122, 2011.Google Scholar
  22. 22.
    Klinkosz, T., C. J. Lewa, and J. Paczkowski. Propagation velocity and attenuation of a shear wave pulse measured by ultrasound detection in agarose and polyacrylamide gels. Ultrasound Med. Biol. 34(2):265–275, 2008.CrossRefPubMedGoogle Scholar
  23. 23.
    Madsen, E. L., M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank. Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys. Med. Biol. 50(23):5597–5618, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Madsen, E. L., J. A. Zagzebski, R. A. Banjavic, and R. E. Jutila. Tissue mimicking materials for ultrasound phantoms. Med. Phys. 5(5):391–394, 1978.CrossRefPubMedGoogle Scholar
  25. 25.
    Madsen, E. L., J. A. Zagzebski, and G. R. Frank. Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med. Biol. 8(3):277–287, 1982.CrossRefPubMedGoogle Scholar
  26. 26.
    Normand, V., D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard. New insight into agarose gel mechanical properties. Biomacromolecules 1(4):730–738, 2000.CrossRefPubMedGoogle Scholar
  27. 27.
    Poepping, T. L., H. N. Nikolov, M. L. Thorne, and D. W. Holdsworth. A thin-walled carotid vessel phantom for Doppler ultrasound flow studies. Ultrasound Med. Biol. 30(8):1067–1078, 2004.CrossRefPubMedGoogle Scholar
  28. 28.
    Ross, K. A., and M. G. Scanlon. Analysis of the elastic modulus of agar gel by indentation. J. Texture Stud. 30(1):17–27, 1999.CrossRefGoogle Scholar
  29. 29.
    Semmlow, J. L., and K. Rahalkar. Acoustic detection of coronary artery disease. Ann. Rev. Biomed. Eng. 9:449–469, 2007.CrossRefGoogle Scholar
  30. 30.
    Thrush, A. J., M. P. Brewin, and M. J. Birch. Assessment of tissue Doppler imaging measurements of arterial wall motion using a tissue mimicking test rig. Ultrasound Med. Biol. 34(3):446–453, 2008.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • M. P. Brewin
    • 1
    Email author
  • M. J. Birch
    • 2
  • D. J. Mehta
    • 1
  • J. W. Reeves
    • 2
  • S. Shaw
    • 3
  • C. Kruse
    • 3
  • J. R. Whiteman
    • 3
  • S. Hu
    • 4
  • Z. R. Kenz
    • 4
  • H. T. Banks
    • 4
  • S. E. Greenwald
    • 1
  1. 1.Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
  2. 2.Clinical PhysicsBarts Health NHS TrustLondonUK
  3. 3.BICOM (Brunel Institute of Computational Mathematics) and MathematicsBrunel UniversityLondonUK
  4. 4.Center for Research in Scientific ComputationNorth Carolina State UniversityRaleighUSA

Personalised recommendations