Skip to main content

Advertisement

Log in

In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Reliable cerebrospinal fluid (CSF) draining methods are needed to treat hydrocephalus, a chronic debilitating brain disorder. Current shunt implant treatments are characterized by high failure rates that are to some extent attributed to their length and multiple components. The designed valve, made of hydrogel, steers away from such protracted schemes and intends to provide a direct substitute for faulty arachnoid granulations, the brain’s natural CSF draining valves, and restore CSF draining operations within the cranium. The valve relies on innate hydrogel swelling phenomena to strengthen reverse flow sealing at idle and negative pressures thereby alleviating common valve failure mechanisms. In vitro measurements display operation in range of natural CSF draining (cracking pressure, P T ~ 1–110 mmH2O and outflow hydraulic resistance, R h ~ 24–152 mmH2O/mL/min), with negligible reverse flow leakage (flow, Q O > −10 µL/min). Hydrodynamic measurements and over-time tests under physically relevant conditions further demonstrate the valve’s operationally-reproducible properties and strengthen its validity for use as a chronic implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Brodbelt, A., and M. Stoodley. CSF pathways: a review. Brit. J. Neurosurg. 21(5):510–520, 2007.

    Article  CAS  Google Scholar 

  2. Bruus, H. Theoretical Microfluidics. New York: Oxford University Press, 2007.

    Google Scholar 

  3. Brydon, H. L., R. Bayston, R. Hayward, and W. Harkness. The effect of protein and blood cells on the flow-pressure characteristics of shunts. Neurosurgery 38(3):498–505, 1996.

    CAS  PubMed  Google Scholar 

  4. Brydon, H. L., G. Keir, E. J. Thompson, R. Bayston, R. Hayward, and W. Harkness. Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption. J. Neurol. Neurosurg. PS. 64(5):643–647, 1998.

    Article  CAS  Google Scholar 

  5. Chabrerie, A., and P. M. Black. Ventricular shunts. J. Intensive Care Med. 17(5):218–229, 2002.

    Article  Google Scholar 

  6. Codman, “Hydrocephalus Catalog,” 2006. [Online]. Available: http://implantesclp.com/uploads/pdf/Codman.pdf. [Accessed 4 October 2014].

  7. Czosnyka, Z. H., K. Cieslicki, M. Czosnyka, and J. D. Pickard. Hydrocephalus shunts and waves of intracranial pressure. Med. Bio. Eng. Comput. 43(1):71–77, 2005.

    Article  CAS  Google Scholar 

  8. Czosnyka, M., Z. Czosnyka, H. Whitehouse, and J. D. Pickard. Hydrodynamic properties of hydrocephalus shunts: United Kingdom shunt evaluation laboratory. J. Neurol. Neurosurg. Psychiatry 62(1):43–50, 1997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Drake, J. M. M. B., J. R. M. Kestle, and R. M. Milner. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43(2):294–303, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Drake, J. M., J. R. W. Kestle, and S. Tuli. CSF shunts 50 years on—past, present, and future. Childs Nerv. Syst. 16:10–11, 2000.

    Article  Google Scholar 

  11. Elixmann, I. M., M. Kwiecien, C. Goffin, M. Walter, B. Misgeld, M. Keifer, W.-I. Steudel, K. Radermacher, and S. Leonhardt. Control of an electromechanical hydrocephalus shunt—a new approach. IEEE. Trans. Biomed. Eng. 61(9):2379–2388, 2014.

    Article  PubMed  Google Scholar 

  12. Garrett, Q., B. Laycock, and R. W. Garrett. Hydrogel lens monomer constituents modulate protein sorption. Invest. Ophth. Vis. Sci. 41(7):1687–1695, 2000.

    CAS  Google Scholar 

  13. Gehrke, S. H., G. P. Andrews, and E. L. Cussler. Chemical aspects of gel extraction. Chem. Eng. Sci. 41(8):2153–2160, 1986.

    Article  CAS  Google Scholar 

  14. Hassler, C., T. Boretius, and T. Stieglitz. Polymers for neural implants. J. Polym. Sci. Part B 49(1):18–33, 2010.

    Article  Google Scholar 

  15. Je, S. S., and J. Chae. A compact, low-power, and electromagnetically actuated microspeaker for hearing aids. IEEE Electron Device Lett. 29:856–858, 2008.

    Article  CAS  Google Scholar 

  16. Johansson, S. B., A. Eklund, J. Malm, G. Stemme, and N. Roxhed. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation. Biomed. Microdevices 16:529–536, 2014.

    Article  PubMed  Google Scholar 

  17. Kim, D., and D. Beebe. A bi-polymer micro one-way valve. Sens. Actuators A 136:426–433, 2007.

    Article  CAS  Google Scholar 

  18. Kotzar, G., M. Freas, P. Abel, A. Fleischman, S. Roy, C. Zorman, J. M. Moran, and J. Melzak. Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials 23(13):2737–2750, 2002.

    Article  CAS  PubMed  Google Scholar 

  19. Lesho, M. J., and N. F. Sheppard, Jr. Adhesion of polymer films to oxidized silicon and its effect on performance of a conductometric pH sensor. Sensors Actuators B 37:61–66, 1996.

    Article  CAS  Google Scholar 

  20. Li, H., T. Y. Ng, Y. K. Yew, and K. Y. Lam. Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromolecules 6(1):109–120, 2004.

    Article  Google Scholar 

  21. Lo, R., P. Li, S. Saati, R. N. Agrawal, M. S. Humayan, and E. Meng. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed. Microdevices 11:959–970, 2009.

    Article  CAS  PubMed  Google Scholar 

  22. Medtronic, “Neurological Products: Shunts,” Medtronic, 8 Oct 2012. [Online]. Available: http://www.medtronic.com/for-healthcare-professionals/products-therapies/neurological/shunts/index.htm. [Accessed 25 May 2014].

  23. Montheard, J., M. Chatzopoulos, and D. Chappard. 2-Hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. J. Macromol. Sci. Part C 32(1):1–34, 1992.

    Article  Google Scholar 

  24. Oh, J., G. Kim, F. Kralick, and H. Noh. Design and fabrication of a PDMS/parylene microvalve for the treatment of hydrocephalus. IEEE/ASME J. Microelectromech. Syst. 20(4):811–818, 2011.

    Article  CAS  Google Scholar 

  25. Quddos, A., H. U. Rehaman, A. Wadood, S. Sulfiqar, and M. L. Mirza. The effect of crosslinking agents on the synthesis and swelling of the polymer networks. J. Chem. Soc. Pak. 25(4):299–304, 2003.

    CAS  Google Scholar 

  26. Reddy, G. K., P. Bollam, and G. Caldito. Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg. 81(2):404–410, 2013.

    Article  PubMed  Google Scholar 

  27. Reiber, H. Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J. Neurol. Sci. 122:189–203, 1994.

    Article  CAS  PubMed  Google Scholar 

  28. Schwerdt, H. N., R. Bristol, and J. Chae. Miniaturized passive hydrogel check valve for hydrocephalus treatment. IEEE Trans. Biomed. Eng. 61(3):814–820, 2014.

    Article  PubMed  Google Scholar 

  29. Stone, J. J., C. T. Walker, M. Jacobson, V. Phillips, and H. J. Silberstein. Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J. Neurosurg Pediatrics 11(1):15–19, 2013.

    Article  Google Scholar 

  30. Timoschenko, S. Theory of Plates and Shells. New York: McGraw-Hill, 1940.

    Google Scholar 

  31. Tirumala, V. R., R. Divan, D. C. Mancini, and G. T. Caneba. Fabrication of high-aspect-ratio hydrogel microstructures. Microsyst. Technol. 11:347–352, 2005.

    Article  CAS  Google Scholar 

  32. Tranoudis, I., and N. Efron. Tensile properties of soft contact lens materials. Contact Lens Anterior Eye 27(4):177–191, 2004.

    Article  PubMed  Google Scholar 

  33. Yang, Y., and J. Chae. Miniaturized protein separation using a liquid chromatography column on a flexible substrate. J. Micromech. Microeng. 18:125010, 2008.

    Article  Google Scholar 

  34. Yetkin, F., U. Kayabas, Y. Ersoy, Y. Bayinder, S. A. Toplu, and I. Tek. Cerebrospinal fluid viscosity: a novel diagnostic measure for acute meningitis. Southern Med. J. 103(9):892–895, 2010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen N. Schwerdt.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwerdt, H.N., Amjad, U., Appel, J. et al. In Vitro Hydrodynamic, Transient, and Overtime Performance of a Miniaturized Valve for Hydrocephalus. Ann Biomed Eng 43, 603–615 (2015). https://doi.org/10.1007/s10439-015-1291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1291-x

Keywords

Navigation