The Effects of Experimentally Induced Low Back Pain on Spine Rotational Stiffness and Local Dynamic Stability

Abstract

Local dynamic stability, quantified using the maximum finite-time Lyapunov exponent (λ max), and the muscular contributions to spine rotational stiffness can provide pertinent information regarding the neuromuscular control of the spine during movement tasks. The primary goal of the present study was to assess if experimental capsaicin-induced low back pain (LBP) affects spine stability and the neuromuscular control of repetitive trunk movements in a group of healthy participants with no history of LBP. Fourteen healthy males were recruited for this investigation. Each participant was asked to complete three trials (baseline, in pain, and recovery) of 35 cycles of a repetitive trunk flexion/extension task at a rate of 0.25 Hz. Local dynamic stability and the muscular contributions to lumbar spine rotational stiffness were significantly impaired during the LBP trial compared to the baseline trial (p < 0.05); however, there was a trend for these measures to recover after a 1 h rest. This study provides evidence that capsaicin can effectively induce LBP, thereby altering spine rotational stiffness and local dynamic stability. Future research should directly compare the effects capsaicin-induced LBP and intramuscular/intraligamentous induced LBP on these same variables.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Abarbanel, H. D. I., R. Brown, J. J. Sidorowich, and L. S. Tsimring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65:1331–1392, 1993.

    Article  Google Scholar 

  2. 2.

    Beaudette, S. M., R. B. Graham, and S. H. M. Brown. The effect of unstable loading versus unstable support conditions on spine rotational stiffness and spine stability during repetitive lifting. J. Biomech. 47:491–496, 2014.

    PubMed  Article  Google Scholar 

  3. 3.

    Brown, M. D., D. C. Holmes, and A. D. Heiner. Measurement of cadaver lumbar spine motion segment stiffness. Spine (Phila. Pa. 1976) 27:918–922, 2002.

    Article  Google Scholar 

  4. 4.

    Brown, S. H. M., and S. M. McGill. Muscle force-stiffness characteristics influence joint stability: a spine example. Clin. Biomech. (Bristol, Avon) 20:917–922, 2005.

    Article  Google Scholar 

  5. 5.

    Brown, S. H. M., and S. M. McGill. The relationship between trunk muscle activation and trunk stiffness: examining a non-constant stiffness gain. Comput. Methods Biomech. Biomed. Eng. 13:829–835, 2010.

    Article  Google Scholar 

  6. 6.

    Bruijn, S. M., J. H. van Dieën, O. G. Meijer, and P. J. Beek. Is slow waking more stable? J. Biomech. 42:1506–1512, 2009.

    PubMed  Article  Google Scholar 

  7. 7.

    Cholewicki, J., and S. M. McGill. Relationship between muscle force and stiffness in the whole mamallian muscle: a simulation study. J. Biomech. Eng. 117:339–342, 1995.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Cholewicki, J., and S. M. McGill. Mechanical stability of the in vivo lumbar spine: implication for injury and chronic low back pain. Clin. Biomech. 11:1–15, 1996.

    Article  Google Scholar 

  9. 9.

    Cholewicki, J., A. P. D. Simons, and A. Radebold. Effects of external trunk loads on lumbar spine stability. J. Biomech. 33:1377–1385, 2000.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Crisco, III, J. J., and M. M. Panjabi. The intersegmental and multisegmental muscles of the lumbar spine: a biomechanical model comparing lateral stabilizing potential. Spine (Phila. Pa. 1976) 16:793–799, 1991.

    Article  Google Scholar 

  11. 11.

    Dancey, E., B. Murphy, J. Srbely, and P. Yielder. The effect of experimental pain on motor training performance and sensorimotor integration. Exp. Brain Res. 232:2879–2889, 2014.

    PubMed  Article  Google Scholar 

  12. 12.

    Demoulin, C., J.-M. Crielaard, and M. Vanderthommen. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Jt. Bone. Spine 74:9–13, 2007.

    Article  Google Scholar 

  13. 13.

    Demoulin, C., V. Distrée, M. Tomasella, J.-M. Crielaard, and M. Vanderthommen. Lumbar functional instability: a critical appraisal of the literature. Ann. Readapt. Med. Phys. 50:677–684, 2007.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Dubois, J.-D., M. Piché, V. Cantin, and M. Descarreaux. Effect of experimental low back pain on neuromuscular control of the trunk in healthy volunteers and patients with chronic low back pain. J. Electromyogr. Kinesiol. 21:774–781, 2011.

    PubMed  Article  Google Scholar 

  15. 15.

    Dupeyron, A., S. M. Rispens, C. Demattei, and J. H. van Dieën. Precision of estimates of local stability of repetitive trunk movements. Eur. Spine J. 22:2678–2685, 2013.

    PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Ebenbichler, G. R., L. I. E. Oddsson, J. Kollmitzer, and Z. Erim. Sensory-motor control of the lower back: Implications for rehabilitation. Med. Sci. Sports Exerc. 33:1889–1898, 2001.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Gardner-morse, M. G., and I. A. F. Stokes. Trunk stiffness increases with steady-state effort. J. Biomech. 34:457–463, 2001.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Graham, R. B., and S. H. M. Brown. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks. J. Biomech. 45:1593–1600, 2012.

    PubMed  Article  Google Scholar 

  19. 19.

    Graham, R. B., L. Y. Oikawa, and G. B. Ross. Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain. J. Biomech. 47:1459–1464, 2014.

    PubMed  Article  Google Scholar 

  20. 20.

    Graham, R. B., E. M. Sadler, and J. M. Stevenson. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting. J. Biomech. 44:461–466, 2011.

    PubMed  Article  Google Scholar 

  21. 21.

    Graham, R. B., E. M. Sadler, and J. M. Stevenson. Local dynamic stability of trunk movements during the repetitive lifting of loads. Hum. Mov. Sci. 31:592–603, 2011.

    PubMed  Article  Google Scholar 

  22. 22.

    Granata, K. P., and S. A. England. Stability of dynamic trunk movement. Spine (Phila. Pa. 1976) 31:E271–E276, 2006.

    Article  Google Scholar 

  23. 23.

    Granata, K. P., and P. Gottipati. Fatigue influences the dynamic stability of the torso. Ergonomics 51:1258–1271, 2008.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Hodges, P. W., M. W. Coppieters, D. MacDonald, and J. Cholewicki. New insight into motor adaptation to pain revealed by a combination of modelling and empirical approaches. Eur. J. Pain 17:1138–1146, 2013.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Hodges, P. W., R. Mellor, K. Crossley, and K. Bennell. Pain induced by injection of hypertonic saline into the infrapatellar fat pad and effect on coordination of the quadriceps muscles. Arthritis Rheum. 61:70–77, 2009.

    PubMed  Article  Google Scholar 

  26. 26.

    Hodges, P. W., and K. Tucker. Moving differently in pain: a new theory to explain the adaptation to pain. Pain 152:S90–S98, 2011.

    PubMed  Article  Google Scholar 

  27. 27.

    Hoy, D., L. March, P. Brooks, A. Woolf, F. Blyth, T. Vos, and R. Buchbinder. Measuring the global burden of low back pain. Best Pract. Res. Clin. Rheumatol. 24:155–165, 2010.

    PubMed  Article  Google Scholar 

  28. 28.

    Hug, F., P. W. Hodges, and K. Tucker. Task dependency of motor adaptations to an acute noxious stimulation. J. Neurophysiol. 111:2298–2306, 2014.

    PubMed  Article  Google Scholar 

  29. 29.

    Hung, L., E. Maracle, J. Srbely, and S. Brown. Acute experimentally induced neck pain does not affect fatigability of the peripheral biceps brachii muscle. Mot. Control 18:395–404, 2014.

    Article  Google Scholar 

  30. 30.

    Joyce, G. C., P. M. H. Rack, and D. R. Westbury. The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J. Physiol. 204:461–474, 1969.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. 31.

    Karayannis, N. V., R. J. E. M. Smeets, W. van den Hoorn, and P. W. Hodges. Fear of movement is related to trunk stiffness in low back pain. PLoS One 8:e67779, 2013.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. 32.

    Kennel, M. B., R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. 45:3403–3411, 1992.

    Article  Google Scholar 

  33. 33.

    Kori, S., R. Miller, and D. Todd. Kinesiophobia: a new view of chronic pain behavior. Pain Manag. 3:35–43, 1990.

    Google Scholar 

  34. 34.

    LaMotte, R., L. Lundberg, and H. Torebjork. Pain, hyperalgesia and activity in nociceptive C units in humans after intrademral injection of capsaicin. J. Physiol. 448:749–764, 1992.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Larivière, C., D. Gagnon, and P. Loisel. The comparison of trunk muscles EMG activation between subjects with and without chronic low back pain during flexion-extension and lateral bending tasks. J. Electromyogr. Kinesiol. 10:79–91, 2000.

    PubMed  Article  Google Scholar 

  36. 36.

    Marras, W. S., S. A. Ferguson, P. Gupta, S. Bose, M. Parnianpour, J.-Y. Kim, and R. R. Crowell. The quantification of low back disorder using motion measures. Spine (Phila. Pa. 1976) 24:2091–2100, 1999.

    CAS  Article  Google Scholar 

  37. 37.

    McGill, S. M. Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics. J. Orthop. Res. 9:91–103, 1991.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    McGill, S. M., S. Grenier, N. Kavcic, and J. Cholewicki. Coordination of muscle activity to assure stability of the lumbar spine. J. Electromyogr. Kinesiol. 13:353–359, 2003.

    PubMed  Article  Google Scholar 

  39. 39.

    McGill, S. M., and R. W. Norman. Partitioning the L4-L5 dynamic moment into disc, ligamentous, and muscular components. Spine (Phila. Pa. 1976) 11:666–678, 1986.

    CAS  Article  Google Scholar 

  40. 40.

    Miller, E. M., B. Bazrgari, M. A. Nussbaum, and M. L. Madigan. Effects of exercise-induced low back pain on intrinsic trunk stiffness and paraspinal muscle reflexes. J. Biomech. 46:801–805, 2013.

    PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Myklebust, J. B., F. Pintar, N. Yoganandan, J. F. Cusick, D. Maiman, T. J. Myers, and A. Sances, Jr. Tensile strength of spinal ligaments. Spine (Phila. Pa. 1976) 13:528–531, 1988.

    Article  Google Scholar 

  42. 42.

    Nelson-Wong, E., D. E. Gregory, D. A. Winter, and J. P. Callaghan. Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin. Biomech. (Bristol, Avon) 23:545–553, 2008.

    Article  Google Scholar 

  43. 43.

    O’Sullivan, P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 10:242–255, 2005.

    PubMed  Article  Google Scholar 

  44. 44.

    O’Sullivan, P. B., A. Burnett, A. N. Floyd, M. M. Ther, K. Gadsdon, J. Logiudice, D. Miller, and H. Quirke. Lumbar repositioning deficit in a specific low back pain population. Spine 28:1074–1079, 2003.

    PubMed  Google Scholar 

  45. 45.

    Panjabi, M. M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 5:383–389, 1992; ((discussion 397)).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Potvin, J. R., and S. H. M. Brown. An equation to calculate individual muscle contributions to joint stability. J. Biomech. 38:973–980, 2005.

    PubMed  Article  Google Scholar 

  47. 47.

    Reeves, N. P., K. S. Narendra, and J. Cholewicki. Spine stability: the six blind men and the elephant. Clin. Biomech. (Bristol, Avon) 22:266–274, 2007.

    Article  Google Scholar 

  48. 48.

    Ringcamp, M., and R. Meyer. Physiology of nociceptors. Senses: Compr. Ref. 5:97–114, 2008.

  49. 49.

    Scott, J., and E. C. Huskisson. Graphic representation of pain. Pain 2:175–184, 1976.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Srbely, J. Z., J. P. Dickey, L. R. Bent, D. Lee, and M. Lowerison. Capsaicin-induced central sensitization evokes segmental increases in trigger point sensitivity in humans. J. Pain 11:636–643, 2010.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Sullivan, M. J. L., S. R. Bishop, and J. Pivik. The pain catastrophizing scale: development and validation. Psychol. Assess. 7:524–532, 1995.

    Article  Google Scholar 

  52. 52.

    Tsao, H., K. J. Tucker, M. W. Coppieters, and P. W. Hodges. Experimentally induced low back pain from hypertonic saline injections into lumbar interspinous ligament and erector spinae muscle. Pain 150:167–172, 2010.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Van Dieën, J. H., J. Cholewicki, and A. Radebold. Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine (Phila. Pa. 1976) 28:834–841, 2003.

    Google Scholar 

  54. 54.

    Willigenburg, N. W., I. Kingma, M. J. M. Hoozemans, and J. H. van Dieën. Precision control of trunk movement in low back pain patients. Hum. Mov. Sci. 32:228–239, 2013.

    PubMed  Article  Google Scholar 

  55. 55.

    Zedka, M., A. Prochazka, B. Knight, D. Gillard, and M. Gauthier. Voluntary and reflex control of human back muscles during induced pain. J. Physiol. 520(Pt 2):591–604, 1999.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgment

This project was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada (RGPIN-2014-05560—R. Graham).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan B. Graham.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ross, G.B., Mavor, M., Brown, S.H.M. et al. The Effects of Experimentally Induced Low Back Pain on Spine Rotational Stiffness and Local Dynamic Stability. Ann Biomed Eng 43, 2120–2130 (2015). https://doi.org/10.1007/s10439-015-1268-9

Download citation

Keywords

  • Neuromuscular control
  • Lyapunov exponents
  • Spine rotational stiffness
  • Capsaicin
  • Biomechanical modeling