Annals of Biomedical Engineering

, Volume 43, Issue 9, pp 2120–2130 | Cite as

The Effects of Experimentally Induced Low Back Pain on Spine Rotational Stiffness and Local Dynamic Stability

  • Gwyneth B. Ross
  • Matthew Mavor
  • Stephen H. M. Brown
  • Ryan B. Graham
Article

Abstract

Local dynamic stability, quantified using the maximum finite-time Lyapunov exponent (λmax), and the muscular contributions to spine rotational stiffness can provide pertinent information regarding the neuromuscular control of the spine during movement tasks. The primary goal of the present study was to assess if experimental capsaicin-induced low back pain (LBP) affects spine stability and the neuromuscular control of repetitive trunk movements in a group of healthy participants with no history of LBP. Fourteen healthy males were recruited for this investigation. Each participant was asked to complete three trials (baseline, in pain, and recovery) of 35 cycles of a repetitive trunk flexion/extension task at a rate of 0.25 Hz. Local dynamic stability and the muscular contributions to lumbar spine rotational stiffness were significantly impaired during the LBP trial compared to the baseline trial (p < 0.05); however, there was a trend for these measures to recover after a 1 h rest. This study provides evidence that capsaicin can effectively induce LBP, thereby altering spine rotational stiffness and local dynamic stability. Future research should directly compare the effects capsaicin-induced LBP and intramuscular/intraligamentous induced LBP on these same variables.

Keywords

Neuromuscular control Lyapunov exponents Spine rotational stiffness Capsaicin Biomechanical modeling 

References

  1. 1.
    Abarbanel, H. D. I., R. Brown, J. J. Sidorowich, and L. S. Tsimring. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65:1331–1392, 1993.CrossRefGoogle Scholar
  2. 2.
    Beaudette, S. M., R. B. Graham, and S. H. M. Brown. The effect of unstable loading versus unstable support conditions on spine rotational stiffness and spine stability during repetitive lifting. J. Biomech. 47:491–496, 2014.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown, M. D., D. C. Holmes, and A. D. Heiner. Measurement of cadaver lumbar spine motion segment stiffness. Spine (Phila. Pa. 1976) 27:918–922, 2002.CrossRefGoogle Scholar
  4. 4.
    Brown, S. H. M., and S. M. McGill. Muscle force-stiffness characteristics influence joint stability: a spine example. Clin. Biomech. (Bristol, Avon) 20:917–922, 2005.CrossRefGoogle Scholar
  5. 5.
    Brown, S. H. M., and S. M. McGill. The relationship between trunk muscle activation and trunk stiffness: examining a non-constant stiffness gain. Comput. Methods Biomech. Biomed. Eng. 13:829–835, 2010.CrossRefGoogle Scholar
  6. 6.
    Bruijn, S. M., J. H. van Dieën, O. G. Meijer, and P. J. Beek. Is slow waking more stable? J. Biomech. 42:1506–1512, 2009.PubMedCrossRefGoogle Scholar
  7. 7.
    Cholewicki, J., and S. M. McGill. Relationship between muscle force and stiffness in the whole mamallian muscle: a simulation study. J. Biomech. Eng. 117:339–342, 1995.PubMedCrossRefGoogle Scholar
  8. 8.
    Cholewicki, J., and S. M. McGill. Mechanical stability of the in vivo lumbar spine: implication for injury and chronic low back pain. Clin. Biomech. 11:1–15, 1996.CrossRefGoogle Scholar
  9. 9.
    Cholewicki, J., A. P. D. Simons, and A. Radebold. Effects of external trunk loads on lumbar spine stability. J. Biomech. 33:1377–1385, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Crisco, III, J. J., and M. M. Panjabi. The intersegmental and multisegmental muscles of the lumbar spine: a biomechanical model comparing lateral stabilizing potential. Spine (Phila. Pa. 1976) 16:793–799, 1991.CrossRefGoogle Scholar
  11. 11.
    Dancey, E., B. Murphy, J. Srbely, and P. Yielder. The effect of experimental pain on motor training performance and sensorimotor integration. Exp. Brain Res. 232:2879–2889, 2014.PubMedCrossRefGoogle Scholar
  12. 12.
    Demoulin, C., J.-M. Crielaard, and M. Vanderthommen. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Jt. Bone. Spine 74:9–13, 2007.CrossRefGoogle Scholar
  13. 13.
    Demoulin, C., V. Distrée, M. Tomasella, J.-M. Crielaard, and M. Vanderthommen. Lumbar functional instability: a critical appraisal of the literature. Ann. Readapt. Med. Phys. 50:677–684, 2007.PubMedCrossRefGoogle Scholar
  14. 14.
    Dubois, J.-D., M. Piché, V. Cantin, and M. Descarreaux. Effect of experimental low back pain on neuromuscular control of the trunk in healthy volunteers and patients with chronic low back pain. J. Electromyogr. Kinesiol. 21:774–781, 2011.PubMedCrossRefGoogle Scholar
  15. 15.
    Dupeyron, A., S. M. Rispens, C. Demattei, and J. H. van Dieën. Precision of estimates of local stability of repetitive trunk movements. Eur. Spine J. 22:2678–2685, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ebenbichler, G. R., L. I. E. Oddsson, J. Kollmitzer, and Z. Erim. Sensory-motor control of the lower back: Implications for rehabilitation. Med. Sci. Sports Exerc. 33:1889–1898, 2001.PubMedCrossRefGoogle Scholar
  17. 17.
    Gardner-morse, M. G., and I. A. F. Stokes. Trunk stiffness increases with steady-state effort. J. Biomech. 34:457–463, 2001.PubMedCrossRefGoogle Scholar
  18. 18.
    Graham, R. B., and S. H. M. Brown. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks. J. Biomech. 45:1593–1600, 2012.PubMedCrossRefGoogle Scholar
  19. 19.
    Graham, R. B., L. Y. Oikawa, and G. B. Ross. Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain. J. Biomech. 47:1459–1464, 2014.PubMedCrossRefGoogle Scholar
  20. 20.
    Graham, R. B., E. M. Sadler, and J. M. Stevenson. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting. J. Biomech. 44:461–466, 2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Graham, R. B., E. M. Sadler, and J. M. Stevenson. Local dynamic stability of trunk movements during the repetitive lifting of loads. Hum. Mov. Sci. 31:592–603, 2011.PubMedCrossRefGoogle Scholar
  22. 22.
    Granata, K. P., and S. A. England. Stability of dynamic trunk movement. Spine (Phila. Pa. 1976) 31:E271–E276, 2006.CrossRefGoogle Scholar
  23. 23.
    Granata, K. P., and P. Gottipati. Fatigue influences the dynamic stability of the torso. Ergonomics 51:1258–1271, 2008.PubMedCrossRefGoogle Scholar
  24. 24.
    Hodges, P. W., M. W. Coppieters, D. MacDonald, and J. Cholewicki. New insight into motor adaptation to pain revealed by a combination of modelling and empirical approaches. Eur. J. Pain 17:1138–1146, 2013.PubMedCrossRefGoogle Scholar
  25. 25.
    Hodges, P. W., R. Mellor, K. Crossley, and K. Bennell. Pain induced by injection of hypertonic saline into the infrapatellar fat pad and effect on coordination of the quadriceps muscles. Arthritis Rheum. 61:70–77, 2009.PubMedCrossRefGoogle Scholar
  26. 26.
    Hodges, P. W., and K. Tucker. Moving differently in pain: a new theory to explain the adaptation to pain. Pain 152:S90–S98, 2011.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoy, D., L. March, P. Brooks, A. Woolf, F. Blyth, T. Vos, and R. Buchbinder. Measuring the global burden of low back pain. Best Pract. Res. Clin. Rheumatol. 24:155–165, 2010.PubMedCrossRefGoogle Scholar
  28. 28.
    Hug, F., P. W. Hodges, and K. Tucker. Task dependency of motor adaptations to an acute noxious stimulation. J. Neurophysiol. 111:2298–2306, 2014.PubMedCrossRefGoogle Scholar
  29. 29.
    Hung, L., E. Maracle, J. Srbely, and S. Brown. Acute experimentally induced neck pain does not affect fatigability of the peripheral biceps brachii muscle. Mot. Control 18:395–404, 2014.CrossRefGoogle Scholar
  30. 30.
    Joyce, G. C., P. M. H. Rack, and D. R. Westbury. The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J. Physiol. 204:461–474, 1969.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Karayannis, N. V., R. J. E. M. Smeets, W. van den Hoorn, and P. W. Hodges. Fear of movement is related to trunk stiffness in low back pain. PLoS One 8:e67779, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kennel, M. B., R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. 45:3403–3411, 1992.CrossRefGoogle Scholar
  33. 33.
    Kori, S., R. Miller, and D. Todd. Kinesiophobia: a new view of chronic pain behavior. Pain Manag. 3:35–43, 1990.Google Scholar
  34. 34.
    LaMotte, R., L. Lundberg, and H. Torebjork. Pain, hyperalgesia and activity in nociceptive C units in humans after intrademral injection of capsaicin. J. Physiol. 448:749–764, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Larivière, C., D. Gagnon, and P. Loisel. The comparison of trunk muscles EMG activation between subjects with and without chronic low back pain during flexion-extension and lateral bending tasks. J. Electromyogr. Kinesiol. 10:79–91, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Marras, W. S., S. A. Ferguson, P. Gupta, S. Bose, M. Parnianpour, J.-Y. Kim, and R. R. Crowell. The quantification of low back disorder using motion measures. Spine (Phila. Pa. 1976) 24:2091–2100, 1999.CrossRefGoogle Scholar
  37. 37.
    McGill, S. M. Electromyographic activity of the abdominal and low back musculature during the generation of isometric and dynamic axial trunk torque: implications for lumbar mechanics. J. Orthop. Res. 9:91–103, 1991.PubMedCrossRefGoogle Scholar
  38. 38.
    McGill, S. M., S. Grenier, N. Kavcic, and J. Cholewicki. Coordination of muscle activity to assure stability of the lumbar spine. J. Electromyogr. Kinesiol. 13:353–359, 2003.PubMedCrossRefGoogle Scholar
  39. 39.
    McGill, S. M., and R. W. Norman. Partitioning the L4-L5 dynamic moment into disc, ligamentous, and muscular components. Spine (Phila. Pa. 1976) 11:666–678, 1986.CrossRefGoogle Scholar
  40. 40.
    Miller, E. M., B. Bazrgari, M. A. Nussbaum, and M. L. Madigan. Effects of exercise-induced low back pain on intrinsic trunk stiffness and paraspinal muscle reflexes. J. Biomech. 46:801–805, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Myklebust, J. B., F. Pintar, N. Yoganandan, J. F. Cusick, D. Maiman, T. J. Myers, and A. Sances, Jr. Tensile strength of spinal ligaments. Spine (Phila. Pa. 1976) 13:528–531, 1988.CrossRefGoogle Scholar
  42. 42.
    Nelson-Wong, E., D. E. Gregory, D. A. Winter, and J. P. Callaghan. Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin. Biomech. (Bristol, Avon) 23:545–553, 2008.CrossRefGoogle Scholar
  43. 43.
    O’Sullivan, P. Diagnosis and classification of chronic low back pain disorders: maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 10:242–255, 2005.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Sullivan, P. B., A. Burnett, A. N. Floyd, M. M. Ther, K. Gadsdon, J. Logiudice, D. Miller, and H. Quirke. Lumbar repositioning deficit in a specific low back pain population. Spine 28:1074–1079, 2003.PubMedGoogle Scholar
  45. 45.
    Panjabi, M. M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 5:383–389, 1992; ((discussion 397)).PubMedCrossRefGoogle Scholar
  46. 46.
    Potvin, J. R., and S. H. M. Brown. An equation to calculate individual muscle contributions to joint stability. J. Biomech. 38:973–980, 2005.PubMedCrossRefGoogle Scholar
  47. 47.
    Reeves, N. P., K. S. Narendra, and J. Cholewicki. Spine stability: the six blind men and the elephant. Clin. Biomech. (Bristol, Avon) 22:266–274, 2007.CrossRefGoogle Scholar
  48. 48.
    Ringcamp, M., and R. Meyer. Physiology of nociceptors. Senses: Compr. Ref. 5:97–114, 2008.Google Scholar
  49. 49.
    Scott, J., and E. C. Huskisson. Graphic representation of pain. Pain 2:175–184, 1976.PubMedCrossRefGoogle Scholar
  50. 50.
    Srbely, J. Z., J. P. Dickey, L. R. Bent, D. Lee, and M. Lowerison. Capsaicin-induced central sensitization evokes segmental increases in trigger point sensitivity in humans. J. Pain 11:636–643, 2010.PubMedCrossRefGoogle Scholar
  51. 51.
    Sullivan, M. J. L., S. R. Bishop, and J. Pivik. The pain catastrophizing scale: development and validation. Psychol. Assess. 7:524–532, 1995.CrossRefGoogle Scholar
  52. 52.
    Tsao, H., K. J. Tucker, M. W. Coppieters, and P. W. Hodges. Experimentally induced low back pain from hypertonic saline injections into lumbar interspinous ligament and erector spinae muscle. Pain 150:167–172, 2010.PubMedCrossRefGoogle Scholar
  53. 53.
    Van Dieën, J. H., J. Cholewicki, and A. Radebold. Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine (Phila. Pa. 1976) 28:834–841, 2003.Google Scholar
  54. 54.
    Willigenburg, N. W., I. Kingma, M. J. M. Hoozemans, and J. H. van Dieën. Precision control of trunk movement in low back pain patients. Hum. Mov. Sci. 32:228–239, 2013.PubMedCrossRefGoogle Scholar
  55. 55.
    Zedka, M., A. Prochazka, B. Knight, D. Gillard, and M. Gauthier. Voluntary and reflex control of human back muscles during induced pain. J. Physiol. 520(Pt 2):591–604, 1999.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Gwyneth B. Ross
    • 1
    • 2
  • Matthew Mavor
    • 1
  • Stephen H. M. Brown
    • 3
  • Ryan B. Graham
    • 1
    • 2
  1. 1.School of Physical and Health Education, Schulich School of EducationNipissing UniversityNorth BayCanada
  2. 2.Biomechanics and Ergonomics Laboratory, School of Kinesiology and Health StudiesQueen’s UniversityKingstonCanada
  3. 3.Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada

Personalised recommendations