Skip to main content

The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty

Abstract

The role of three-dimensional (3D) printing has expanded in diverse areas in medicine. As plastic surgery needs to fulfill the different demands from diverse individuals, the applications of tailored 3D printing will become indispensable. In this study, we evaluated the feasibility of using 3D-printed polycaprolactone (PCL) scaffold seeded with fibrin/chondrocytes as a new dorsal augmentation material for rhinoplasty. The construct was surgically implanted on the nasal dorsum in the subperiosteal plane of six rabbits. The implants were harvested 4 and 12 weeks after implantation and evaluated by gross morphological assessment, radiographic imaging, and histologic examination. The initial shape of the implant was unchanged in all cases, and no definite post-operative complications were seen over the 3-month period. Radiologic evaluation confirmed that implants remained in the initial location without migration or extrusion. Histologic evaluations showed that the scaffold architectures were maintained with minimal inflammatory reactions; however, expected neo-chondrogenesis was not definite in the constructs. A new PCL scaffold designed by 3D printing method seeded with fibrin/chondrocytes can be a biocompatible augmentation material in rhinoplasty in the future.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    Baker, S. C., G. Rohman, J. Southgate, and N. R. Cameron. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 30(7):1321–1328, 2009.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Berghaus, A., and K. Stelter. Alloplastic materials in rhinoplasty. Curr. Opin. Otolaryngol. Head Neck Surg. 14(4):270–277, 2006.

    PubMed  Article  Google Scholar 

  3. 3.

    Bermueller, C., S. Schwarz, A. F. Elsaesser, J. Sewing, N. Baur, A. von Bomhard, M. Scheithauer, H. Notbohm, and N. Rotter. Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng. Part A 19(19–20):2201–2214, 2013.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Chaim, I. A., M. A. Sabino, M. Mendt, A. J. Muller, and D. Ajami. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 6(4):272–279, 2012.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Cingi, C., A. Calli, N. Erdogmus, C. Calli, I. Yilgor, E. Yilgor, and C. Bal. Two new polymers as candidates for rhinoplasty allografts: an experimental study in a rabbit model. Ann. Otol. Rhinol. Laryngol. 122(7):474–479, 2013.

    PubMed  Google Scholar 

  6. 6.

    Cologlu, H., A. Uysal, U. Kocer, Y. Kankaya, M. Oruc, and S. Uysal. Rhinoplasty model in rabbit. Plastic Reconstr. Surg. 117(6):1851–1859, 2006.

    CAS  Article  Google Scholar 

  7. 7.

    Dash, T. K., and V. B. Konkimalla. Poly-small je, Ukrainian-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 158(1):15–33, 2012.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Daudt, 3rd, D. R., B. Mueller, Y. H. Park, Y. Wen, and T. Yorio. Methylene blue protects primary rat retinal ganglion cells from cellular senescence. Investig. Ophthalmol. Vis. Sci. 53(8):4657–4667, 2012.

    CAS  Article  Google Scholar 

  9. 9.

    El-Ayoubi, R., C. DeGrandpre, R. DiRaddo, A. M. Yousefi, and P. Lavigne. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J. Biomater. Appl. 25(5):429–444, 2011.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Esposito, A. R., M. Moda, S. M. Cattani, G. M. de Santana, J. A. Barbieri, M. M. Munhoz, T. P. Cardoso, M. L. Barbo, T. Russo, U. D’Amora, A. Gloria, L. Ambrosio, and E. A. Duek. PLDLA/PCL-T scaffold for meniscus tissue engineering. BioRes Open Access. 2(2):138–147, 2013.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. 11.

    Greene, J. J., and D. Watson. Septal cartilage tissue engineering: new horizons. Facial Plastic Surg. 26(5):396–404, 2010.

    CAS  Article  Google Scholar 

  12. 12.

    Jeong, C. G., and S. J. Hollister. A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials 31(15):4304–4312, 2010.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    Kafienah, W., M. Jakob, O. Demarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8(5):817–826, 2002.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kim, D. Y., J. Pyun, J. W. Choi, J. H. Kim, J. S. Lee, H. A. Shin, H. J. Kim, H. N. Lee, B. H. Min, H. E. Cha, and C. H. Kim. Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Laryngoscope 120(1):30–38, 2010.

    CAS  PubMed  Google Scholar 

  15. 15.

    Lee, J. S., J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh, and D. W. Cho. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103, 2014.

    PubMed  Article  Google Scholar 

  16. 16.

    Lee, M. R., J. G. Unger, and R. J. Rohrich. Management of the nasal dorsum in rhinoplasty: a systematic review of the literature regarding technique, outcomes, and complications. Plastic Reconstr. Surg. 128(5):538e–550e, 2011.

    Article  Google Scholar 

  17. 17.

    Lee, M., and B. M. Wu. Recent advances in 3D printing of tissue engineering scaffolds. Methods Mole Biol 868:257–267, 2012.

    CAS  Article  Google Scholar 

  18. 18.

    Li, W. J., K. G. Danielson, P. G. Alexander, and R. S. Tuan. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. Part A 67(4):1105–1114, 2003.

    Article  Google Scholar 

  19. 19.

    Naumann, A., N. Rotter, J. Bujia, and J. Aigner. Tissue engineering of autologous cartilage transplants for rhinology. Am. J. Rhinol. 12(1):59–63, 1998.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Park, S. H., B. H. Choi, S. R. Park, and B. H. Min. Chondrogenesis of rabbit mesenchymal stem cells in fibrin/hyaluronan composite scaffold in vitro. Tissue Eng. Part A 17(9–10):1277–1286, 2011.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Park, S., G. Kim, Y. C. Jeon, Y. Koh, and W. Kim. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J. Mater. Sci. Mater. Med. 20(1):229–234, 2009.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Rotter, N., J. Aigner, A. Naumann, H. Planck, C. Hammer, G. Burmester, and M. Sittinger. Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. J. Biomed. Mater. Res. 42(3):347–356, 1998.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Sajjadian, A., N. Naghshineh, and R. Rubinstein. Current status of grafts and implants in rhinoplasty: part II. Homologous grafts and allogenic implants. Plastic Reconstr. Surg. 125(3):99e–109e, 2010.

    CAS  Article  Google Scholar 

  24. 24.

    Sajjadian, A., R. Rubinstein, and N. Naghshineh. Current status of grafts and implants in rhinoplasty: part I. Autologous grafts. Plastic Reconstr. Surg. 125(2):40e–49e, 2010.

    Article  Google Scholar 

  25. 25.

    Schubert, C., M. C. van Langeveld, and L. A. Donoso. Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98(2):159–161, 2014.

    PubMed  Google Scholar 

  26. 26.

    Shin, Y. S., B. H. Lee, J. W. Choi, B. H. Min, J. W. Chang, S. S. Yang, and C. H. Kim. Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold. Int. J. Pediatr. Otorhinolaryngol. 78(1):32–38, 2014.

    PubMed  Article  Google Scholar 

  27. 27.

    Watson, D. Tissue engineering for rhinoplasty. Facial Plastic Surg. Clin. N Am. 17(1):157–165, 2009.

    Article  Google Scholar 

  28. 28.

    Yannas, I. V. Emerging rules for inducing organ regeneration. Biomaterials 34(2):321–330, 2013.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Yu, M. S., H. S. Park, H. J. Lee, and Y. J. Jang. Histomorphological changes of Tutoplast-processed fascia lata grafts in a rabbit rhinoplasty model. Otolaryngol. Head Neck Surg. 147(2):239–244, 2012.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by 2013 Ajou University Translational Research Center Fund (Seed type).

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chul Ho Kim.

Additional information

Associate Editor Scott I. Simon oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.S., Shin, Y.S., Park, D.Y. et al. The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty. Ann Biomed Eng 43, 2153–2162 (2015). https://doi.org/10.1007/s10439-015-1261-3

Download citation

Keywords

  • Rhinoplasty
  • Augmentation material
  • 3D printing
  • Animal model
  • Polycaprolactone
  • Tissue engineering