Skip to main content

Computational Modelling of Multi-folded Balloon Delivery Systems for Coronary Artery Stenting: Insights into Patient-Specific Stent Malapposition


Despite the clinical effectiveness of coronary artery stenting, percutaneous coronary intervention or “stenting” is not free of complications. Stent malapposition (SM) is a common feature of “stenting” particularly in challenging anatomy, such as that characterized by long, tortuous and bifurcated segments. SM is an important risk factor for stent thrombosis and recently it has been associated with longitudinal stent deformation. SM is the result of many factors including reference diameter, vessel tapering, the deployment pressure and the eccentric anatomy of the vessel. For the purpose of the present paper, virtual multi-folded balloon models have been developed for simulated deployment in both constant and varying diameter vessels under uniform pressure. The virtual balloons have been compared to available compliance charts to ensure realistic inflation response at nominal pressures. Thereafter, patient-specific simulations of stenting have been conducted aiming to reduce SM. Different scalar indicators, which allow a more global quantitative judgement of the mechanical performance of each delivery system, have been implemented. The results indicate that at constant pressure, the proposed balloon models can increase the minimum stent lumen area and thereby significantly decrease SM.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9



Percutaneous coronary intervention


Stent malapposition


Stent thrombosis


Drug eluting stent


Finite element analysis


Right coronary artery


Left anterior descenting




Left main


Total average curvature


Total average torsion


Volume average stress


Area average stent malapposition


Minimum lumen area


Volume gain


  1. AbbotVascular. The Xience Everolimus Eluting Coronary Stent System Instructions for Use, 2008. URL p. 59. Accessed 11 July 2014.

  2. Al Suwaidi, J., W. Yeh, H. A. Cohen, K. M. Detre, D. O. Williams, and D. R. Holmes. Immediate and one-year outcome in patients with coronary bifurcation lesions in the modern era (nhlbi dynamic registry). Am. J. Cardiol. 87(10):1139–1144, 2001.

    CAS  PubMed  Article  Google Scholar 

  3. Chua, S. D., B. M. Donald, and M. Hashmi. Finite element simulation of stent and balloon interaction. J. Mater. Process. Technol., 143–144(0):591–597, 2003. Proceedings of the International Conference on the Advanced Materials Processing Technology, 2001.

  4. Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3(4):374–387, 2012.

    Article  Google Scholar 

  5. De Beule, M. Finite element stent design. PhD Thesis, Ghent University, 2008. URL

  6. De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41(2):383–389, 2008.

    PubMed  Article  Google Scholar 

  7. Doulaverakis, C., I. Tsampoulatidis, A. P. Antoniadis, Y. S. Chatzizisis, A. Giannopoulos, I. Kompatsiaris, and G. D. Giannoglou. Ivusangio tool: a publicly available software for fast and accurate 3d reconstruction of coronary arteries. Comput. Biol. Med. 43(11):1793–1803, 2013.

    PubMed  Article  Google Scholar 

  8. England, W. T., and T. L. Miller. Volumes and cross-sectional areas, Math. Mag. 74(4):288–295, 2001.

    Article  Google Scholar 

  9. Foin, N., R. Torii, P. Mortier, et al. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: Lessons from micro-computed tomography and computational simulations. JACC Cardiovasc. Interv. 5(1):47–56, 2012.

    PubMed  Article  Google Scholar 

  10. Fysal, Z., T. Hyde, E. Barnes, W. McCrea, and S. Ramcharitar. Evaluating stent optimisation technique (stentboost) in a dedicated bifurcation stent (the tryton). Cardiovasc. Revasc. Med. 15(2):92–96, 2014.

    PubMed  Article  Google Scholar 

  11. Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, and F. Migliavacca. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9(5):551–561, 2010.

    PubMed  Article  Google Scholar 

  12. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41(6):1206–1212, 2008.

    PubMed  Article  Google Scholar 

  13. Grogan, J., B. O’Brien, S. Leen, and P. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7(9):3523–3533, 2011.

    CAS  PubMed  Article  Google Scholar 

  14. Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials, 34(33):8049–8060, 2013.

    CAS  PubMed  Article  Google Scholar 

  15. Gutierrez-Chico, J. L., E. Regar, E. Nuesch, et al. Delayed coverage in malapposed and side-branch struts with respect to well-apposed struts in drug-eluting stents: In vivo assessment with optical coherence tomography. Circulation 124(5):612–623, 2011.

    CAS  PubMed  Article  Google Scholar 

  16. Hanratty, C., and S. Walsh. Longitudinal compression: a new complication with modern coronary stent platforms-time to think beyond deliverability. EuroIntervention 7:872–877, 2011.

    PubMed  Article  Google Scholar 

  17. Hildick-Smith, D., A. J. de Belder, N. Cooter, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: The british bifurcation coronary study: old, new, and evolving strategies. Circulation 121(10):1235–1243, 2010.

    CAS  PubMed  Article  Google Scholar 

  18. Holzapfel, G. A. Non Linear Solid Mechanics: A Continuum Approach for Engineering. Chichester: Wiley, 2000. pp. 239–249.

  19. Holzapfel, G. A., M. Stadler, and T. G. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: Computational assessment of parametric stent designs. J. Biomech. Eng. 127(1):166–180, 2005a.

    PubMed  Article  Google Scholar 

  20. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289(5):H2048–H2058, 2005b.

    CAS  PubMed  Article  Google Scholar 

  21. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35(11):1857–1869, 2007.

    PubMed  Article  Google Scholar 

  22. Laroche, D., S. Delorme, T. Anderson, and R. DiRaddo. Computer prediction of friction in balloon angioplasty and stent implantation. In: Biomedical Simulation. Lecture Notes in Computer Science, vol. 4072. Berlin: Springer, 2006, pp. 1–8.

  23. Lefevre, T., O. Darremont, and R. Albiero. Provisional side branch stenting for the treatment of bifurcation lesions. EuroIntervention 6:65–71, 2010.

    Article  Google Scholar 

  24. Liang, D., D. Yang, M. Qi, and W. Wang. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int. J. Cardiol. 104(3):314–318, 2005.

    CAS  PubMed  Article  Google Scholar 

  25. Lim, D., S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, S. Al-Hassani, and H.-S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36(7):1118–1129, 2008.

    PubMed  Article  Google Scholar 

  26. Magro, M., and R.-J. van Geuns. The tryton side branch stent. EuroIntervention 6:147–150, 2010.

    Article  Google Scholar 

  27. Martin, D., and F. Boyle. Finite element analysis of balloon-expandable coronary stent deployment: Influence of angioplasty balloon configuration. Int. J. Numer. Method Biomed. Eng. 29(11):1161–1175, 2013.

    PubMed  Article  Google Scholar 

  28. Millman, R. S., and G. D. Parker. Elements of Differential Geometry. Berkeley: Prentice Hall Inc, 1977. pp. 46.

  29. Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: Where we are, where to go. Ann. Biomed. Eng. 41(7):1428–1444, 2013.

    PubMed  Article  Google Scholar 

  30. Morlacchi, S., C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic nurical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133(2):121010(1–11), 2011.

  31. Morlacchi, S., C. Chiastra, E. Cutri, P. Zunino, F. Burzotta, L. Formaggia, G. Dubini, and F. Migliavacca. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 9:1441–1453, 2014.

    PubMed  Article  Google Scholar 

  32. Mortier, P., S. Carlier, R. Van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130(2):021018(1–7), 2008.

  33. Mortier, P., G. Holzapfel, M. De Beule, D. Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38(1):88–99, 2010.

    PubMed  Article  Google Scholar 

  34. Mortier, P., M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Virtual bench testing of new generation coronary stents. EuroIntervention 7:369–376, 2011.

    PubMed  Article  Google Scholar 

  35. Mortier, P., Y. Hikichi, N. Foin, G. De Santis, P. Segers, B. Verhegghe, and M. De Beule. Provisional stenting of coronary bifurcations: insights into final kissing balloon post-dilation and stent design by computational modeling. JACC Cardiovasc. Interv. 7(3):325–333, 2014.

    PubMed  Article  Google Scholar 

  36. Ozaki, Y., M. Okumura, T. F. Ismail, et al. The fate of incomplete stent apposition with drug- eluting stents: an optical coherence tomography-based natural history study. Eur. Heart J. 31:1470–1476, 2010.

    PubMed  Article  Google Scholar 

  37. Pan, M., J. Suarez de Lezo, A. Medina, et al. Rapamycin-eluting stents for the treatment of bifurcated coronary lesions: a randomized comparison of a simple versus complex strategy. Am. Heart J. 148(5):857–864, 2004.

    CAS  PubMed  Article  Google Scholar 

  38. Pant, S., G. Limbert, N. P. Curzen, and N. W. Bressloff. Multiobjective design optimisation of coronary stents. Biomaterials 32(31):7755–7773, 2011.

    CAS  PubMed  Article  Google Scholar 

  39. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model Mechanobiol. 11(1–2):61–82, 2012.

    PubMed  Article  Google Scholar 

  40. Pleva, L., T. Jonszta, P. Kukla, J. Zapletalova, P. Berger, J. Mrozek, M. Porzer, and B. Obzut. Dedicated tryton side branch stents used in the treatment of coronary bifurcation lesions. Cor et Vasa, 2014. In press.

  41. Ragkousis, G. E., N. Curzen, and N. W. Bressloff. Simulation of longitudinal stent deformation in a patient-specific coronary artery. Med. Eng. Phys. 36(4):467–476, 2014.

    PubMed  Article  Google Scholar 

  42. Saab, M. A. Applications of high-pressure balloons in the medical device industry., September 2000. Assessed May 2014.

  43. Vasa-Nicotera, M., and T. Gershlick. Stent thrombosis. In: Oxford Textbook of Interventional Cardiology. Oxford: Oxford University Press, chapter 29, pp. 504–523, 2010.

  44. Waksman, R. Late thrombosis after radiation: sitting on a time bomb. Circulation 100(8):780–782, 1999.

    CAS  PubMed  Article  Google Scholar 

  45. Wang, D. L., B.-S. Wung, Y.-J. Shyy, C.-F. Lin, Y.-J. Chao, S. Usami, and S. Chien. Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells: effects of mechanical strain on monocyte adhesion to endothelial cells. Circ. Res. 77(2):294–302, 1995.

    CAS  PubMed  Article  Google Scholar 

  46. Williams, D. P., M. Mamas, K. Morgan, M. El-Omar, B. Clarke, A. Brainbridge, Fath-Ordoubadi, and D. D. Fraser (2012) Longitudinal stent deformation: a retrospective analysis of frequency and mechanisms. EuroIntervention 8(2):267–74.

  47. Zahedmanesh, H., J. Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy. J. Biomech. 43(11):2126–2132, 2010.

    PubMed  Article  Google Scholar 

Download references


This work was funded by Medtronic Inc. (Minnesota, USA), the Faculty of Engineering and the Environment and the Faculty of Medicine of Southampton University. The authors would like to acknowledge the unrestricted support offered which ultimately allowed the project to be completed.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Neil W. Bressloff.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1064291 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ragkousis, G.E., Curzen, N. & Bressloff, N.W. Computational Modelling of Multi-folded Balloon Delivery Systems for Coronary Artery Stenting: Insights into Patient-Specific Stent Malapposition. Ann Biomed Eng 43, 1786–1802 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Coronary stents
  • Balloon delivery systems
  • Patient-specific model
  • Stent malapposition
  • Finite element analysis