Skip to main content

Advertisement

Log in

Effects of Polypropylene Carbonate/Poly(d,l-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Bone tissue engineering utilizing biomaterials to improve osteoblast growth has provided de novo consideration for therapy of bone diseases. Polypropylene carbonate (PPC) is a polymer with a low glass transition temperature but high elasticity. In this study, we developed a new PPC-derived composite by mixing poly-lactic acid (PLA) and tricalcium phosphate (TCP), called PPC/PLA/TCP elastic (PPTE) scaffolds. We also evaluated the beneficial effects of PPTE composites on osteoblast growth and maturation and the possible mechanisms. Compared to PPC polymers, PPTE composites had similar pore sizes and porosities but possessed better hydrophilic surface structures. Biological evaluations further revealed that PPTE composites attracted adhesion of mouse osteoblasts, and these bone cells extended along the porous scaffolds to produce accurate fibroblast-like morphologies. In parallel, seeding mouse osteoblasts onto PPTE composites time-dependently increased cell growth. Sequentially, PPTE composites augmented DNA replication and cell proliferation. Consequently, PPTE composites significantly improved osteoblast mineralization. As to the mechanism, treatment with PPTE composites induced osteopontin (OPN) mRNA and protein expression and alkaline phosphatase activity. Taken together, this study showed that PPTE composites with porous and hydrophilic surfaces can stimulate osteoblast adhesion, proliferation, and maturation through an OPN-dependent mechanism. Therefore, the de novo PPTE scaffolds may have biomaterial potential for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aubin, J. E. Bone stem cells. J. Cell. Biochem. 30–31:73–82, 1998.

    Article  Google Scholar 

  2. Aubin, J. E., F. Liu, L. Malaval, and A. K. Gupta. Osteoblast and chondroblast differentiation. Bone 17:77S–83S, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Borden, M., M. Attawia, Y. Khan, and C. T. Laurencin. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials 23:551–559, 2002.

    Article  CAS  PubMed  Google Scholar 

  4. Chatakun, P., R. Núñez-Toldrà, E. J. Díaz López, C. Gil-Recio, E. Martínez-Sarrà, F. Hernández-Alfaro, E. Ferrés-Padró, L. Giner-Tarrida, and M. Atari. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature. Cell. Mol. Life Sci. 71:113–142, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, R. M., Y. L. Lin, and C. W. Chou. GATA-3 transduces survival signals in osteoblasts through upregulation of bcl-xL gene expression. J. Bone Miner. Res. 25:2193–2204, 2010.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, R. M., Y. T. Tai, T. G. Chen, T. H. Lin, H. C. Chang, T. L. Chen, and G. J. Wu. Propofol protects against nitrosative stress-induced breakage of the blood-brain barrier through reducing apoptotic insults to cerebrovascular endothelial cells. Surgery 154:58–68, 2013.

    Article  PubMed  Google Scholar 

  7. Cheng, Y., D. Ramos, P. Lee, D. Liang, X. Yu, and S. G. Kumbar. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells Bone tissue engineering. J. Biomed. Nanotechnol. 10:287–298, 2014.

    Article  CAS  PubMed  Google Scholar 

  8. Cho, H. J., H. J. Cho, and H. S. Kim. Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr. Atheroscler. Rep. 11:206–213, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Collin-Osdoby, P., G. A. Nickols, and P. Osdoby. Bone cell function, regulation, and communication: a role for nitric oxide. J. Cell. Biochem. 57:399–408, 1995.

    Article  CAS  PubMed  Google Scholar 

  10. Divya Rani, V. V., K. Manzoor, D. Menon, N. Selvamurugan, and S. V. Nair. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology 20:195101–195112, 2009.

    Article  CAS  PubMed  Google Scholar 

  11. Du, L. C., Y. Z. Meng, S. J. Wang, and S. C. Tjong. Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. J. Appl. Polym. Sci. 92:1840–1846, 2004.

    Article  CAS  Google Scholar 

  12. Feng, J. Q., E. L. Clinkenbeard, B. Yuan, K. E. White, and M. K. Drezner. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone 54:213–221, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Giustina, A., G. Mazziotti, and E. Canalis. Growth hormone, insulin-like growth factors, and the skeleton. Endocrine Rev. 29:535–559, 2008.

    Article  CAS  Google Scholar 

  14. Gorter, E. A., N. A. Hamdy, N. M. Appelman-Dijkstra, and I. B. Schipper. The role of vitamin D in human fracture healing: a systematic review of the literature. Bone 64:288–297, 2014. doi:10.1016/j.bone.2014.04.026.

    Article  CAS  PubMed  Google Scholar 

  15. Gorter, E. A., N. A. Hamdy, N. M. Appelman-Dijkstra, and I. B. Schipper. The role of vitamin D in human fracture healing: a systematic review of the literature. Bone 64C:288–297, 2014.

    Article  Google Scholar 

  16. Hamlekhan, A., A. Butt, S. Patel, D. Royhman, C. Takoudis, C. Sukotjo, J. Yuan, G. Jursich, M. T. Mathew, W. Hendrickson, A. Virdi, and T. Shokuhfar. Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PLoS ONE 9:e96213, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Haylock, D. N., and S. K. Nilsson. Osteopontin: a bridge between bone and blood. Br. J. Haematol. 134:467–474, 2006.

    Article  CAS  PubMed  Google Scholar 

  18. Ho, W. P., W. P. Chan, M. S. Hsieh, and R. M. Chen. Runx2-mediated Bcl-2 gene expression contributes to nitric oxide protection against oxidative stress-induced osteoblast apoptosis. J. Cell. Biochem. 108:1084–1093, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Hodsman, A. B., D. C. Bauer, D. W. Dempster, L. Dian, D. A. Hanley, S. T. Harris, D. L. Kendler, M. R. McClung, P. D. Miller, W. P. Olszynski, E. Orwoll, and C. K. Yuen. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocrine Rev. 26:688–703, 2005.

    Article  CAS  Google Scholar 

  20. Huang, Z., J. Tian, B. Yu, Y. Xu, and Q. Feng. A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomed. Mater. 4:55005, 2009.

    Article  Google Scholar 

  21. Kueng, W., E. Silber, and U. Eppenberger. Quantification of cells cultured on 96-well plates. Anal. Biochem. 182:16–19, 1989.

    Article  CAS  PubMed  Google Scholar 

  22. Liao, M. H., Y. T. Tai, Y. G. Cherng, S. H. Liu, Y. A. Chang, P. I. Lin, and R. M. Chen. Genistein induces estrogen receptor-α gene expression in osteoblasts through activation of MAPKs/NF-κB/AP-1 and promotes cell mineralization. Br. J. Nutr. 111:55–63, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Lin, P. L., H. W. Fang, T. Tseng, and W. Lee. Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mat. Lett. 61:3009, 2007.

    Article  CAS  Google Scholar 

  24. Lu, P., and Z. Werb. Patterning mechanisms of branched organs. Science 322:1506–1509, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mogi, M., and A. Togari. Activation of caspases is required for osteoblastic differentiation. J. Biol. Chem. 278:47477–47482, 2003.

    Article  CAS  PubMed  Google Scholar 

  26. Nam, D., E. Mau, Y. Wang, D. Wright, D. Silkstone, H. Whetstone, C. Whyne, and B. Alman. T-Lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS ONE 7:e40044, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Olivier, V., N. Faucheux, and P. Hardouin. Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery. Drug Discov. Today 9:803–811, 2004.

    Article  CAS  PubMed  Google Scholar 

  28. Patntirapong, S., W. Singhatanadgit, P. Meesap, T. Theerathanagorn, M. Toso, and W. Janvikul. Stem cell adhesion and proliferation on hydrolyzed poly(butylene succinate)/β-tricalcium phosphate composites. J. Biomed. Mater. Res. A 2014. doi:10.1002/jbm.a.35214.

    PubMed  Google Scholar 

  29. Raouf, A., and A. Seth. Ets transcription factors and targets in osteogenesis. Oncogene 19:6455–6463, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Rungby, J., M. Kassem, E. F. Eriksen, and G. Danscher. The von Kossa reaction for calcium deposits: silver lactate staining increases sensitivity and reduces background. Histochem. J. 25:446–451, 1993.

    Article  CAS  PubMed  Google Scholar 

  31. Samavedi, S., A. R. Whittington, and A. S. Goldstein. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 9:8037–8045, 2013.

    Article  CAS  PubMed  Google Scholar 

  32. Shapiro, F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur. Cells Mater. 155:53–76, 2008.

    Google Scholar 

  33. Sheng, M. H., K. H. Lau, and D. J. Baylink. Role of osteocyte-derived insulin-like growth factor i in developmental growth, modeling, remodeling, and regeneration of the bone. J. Bone Metab. 21:41–54, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Shrivats, A. R., M. C. McDermott, and J. Q. Hollinge. Bone tissue engineering: state of the union. Drug Discov. Today. 19(6):781–786, 2014. doi:10.1016/j.drudis.2014.04.010.

    Article  CAS  PubMed  Google Scholar 

  35. Stein, G. S., J. B. Lian, J. L. Stein, A. J. van Wijnen, and M. Montecino. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 76:593–624, 1996.

    CAS  PubMed  Google Scholar 

  36. Vert, M., J. Mauduit, and S. Li. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15:1209–1213, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Wei, J. D., Y. L. Lin, C. H. Tsai, H. S. Shieh, P. I. Lin, W. P. Ho, and R. M. Chen. SATB2 participates in regulation of menadione-induced apoptotic insults to osteoblasts. J. Orthop. Res. 30:1058–1066, 2012.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, T. T., Y. T. Tai, Y. G. Cherng, T. G. Chen, T. L. Chen, H. C. Chang, and R. M. Chen. GATA-2 transduces LPS-induced il-1β gene expression in macrophages via a toll-like receptor 4/MD88/MAPK-dependent mechanism. PLoS ONE 8:e72404, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yan, D., J. Jones, X. Y. Yuan, X. H. Xu, J. Sheng, J. C. Lee, G. Q. Ma, and Q. S. Yu. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J. Biomed. Mater. Res. A 101:963–972, 2013.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou, H., P. Choong, R. McCarthy, S. T. Chou, T. J. Martin, and K. W. Ng. In situ hybridization to show sequential expression of osteoblast gene markers during bone formation in vivo. J. Bone Miner. Res. 9:1489–1499, 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Taipei Medical University and National Taipei University of Technology (NTUT-TMU-100-06 and NTUT-TMU-101-15), Wan-Fang Hospital (102-wf-eva-20), and National Science Council (NSC101-2314-B-038-008-MY3; NSC101-2314-B-038-003-MY3), Taipei, Taiwan. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruei-Ming Chen.

Additional information

Associate Editor Mona Kamal Marei oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, HW., Kao, WY., Lin, PI. et al. Effects of Polypropylene Carbonate/Poly(d,l-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation. Ann Biomed Eng 43, 1999–2009 (2015). https://doi.org/10.1007/s10439-014-1236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1236-9

Keywords

Navigation