Skip to main content

Advertisement

Log in

Engineered Fibrin Gels for Parallel Stimulation of Mesenchymal Stem Cell Proangiogenic and Osteogenic Potential

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mesenchymal stem/stromal cells (MSCs) are under examination for use in cell therapies to repair bone defects resulting from trauma or disease. MSCs secrete proangiogenic cues and can be induced to differentiate into bone-forming osteoblasts, yet there is limited evidence that these events can be achieved in parallel. Manipulation of the cell delivery vehicle properties represents a candidate approach for directing MSC function in bone healing. We hypothesized that the biophysical properties of a fibrin gel could simultaneously regulate the proangiogenic and osteogenic potential of entrapped MSCs. Fibrin gels were formed by supplementation with NaCl (1.2, 2.3, and 3.9% w/v) to modulate gel biophysical properties without altering protein concentrations. MSCs entrapped in 1.2% w/v NaCl gels were the most proangiogenic in vitro, yet cells in 3.9% w/v gels exhibited the greatest osteogenic response. Compared to the other groups, MSCs entrapped in 2.3% w/v gels provided the best balance between proangiogenic potential, osteogenic potential, and gel contractility. The contribution of MSCs to bone repair was then examined when deployed in 2.3% w/v NaCl gels and implanted into an irradiated orthotopic bone defect. Compared to acellular gels after 3 weeks of implantation, defects treated with MSC-loaded fibrin gels exhibited significant increases in vessel density, early osteogenesis, superior morphology, and increased cellularity of repair tissue. Defects treated with MSC-loaded gels exhibited increased bone formation after 12 weeks compared to blank gels. These results confirm that fibrin gel properties can be modulated to simultaneously promote both the proangiogenic and osteogenic potential of MSCs, and fibrin gels modified by supplementation with NaCl are promising carriers for MSCs to stimulate bone repair in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ahmed, T. A., E. V. Dare, and M. Hincke. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. B 14(2):199–215, 2008.

    Article  CAS  Google Scholar 

  2. Alston, S. M., K. A. Solen, A. H. Broderick, S. Sukavaneshvar, and S. F. Mohammad. New method to prepare autologous fibrin glue on demand. Transl Res 149(4):187–195, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Annabi, N., A. Tamayol, J. A. Uquillas, M. Akbari, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, and A. Khademhosseini. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Adv. Mater. 26(1):85–123, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Arrington, E. D., W. J. Smith, H. G. Chambers, A. L. Bucknell, and N. A. Davino. Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res. 329:300–309, 1996.

    Article  PubMed  Google Scholar 

  5. Barsotti, M. C., A. Magera, C. Armani, F. Chiellini, F. Felice, D. Dinucci, A. M. Piras, A. Minnocci, R. Solaro, G. Soldani, et al. Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells. Cell Prolif. 44(1):33–48, 2011.

    Article  CAS  PubMed  Google Scholar 

  6. Bhat, A., A. I. Hoch, M. L. Decaris, and J. K. Leach. Alginate hydrogels containing cell-interactive beads for bone formation. FASEB J. 27(12):4844–4852, 2013.

    Article  CAS  PubMed  Google Scholar 

  7. Binder, B. Y., D. C. Genetos, and J. K. Leach. Lysophosphatidic acid protects human mesenchymal stromal cells from differentiation-dependent vulnerability to apoptosis. Tissue Eng. A 20(7–8):1156–1164, 2014.

    Article  CAS  Google Scholar 

  8. Blomback, B., and N. Bark. Fibrinopeptides and fibrin gel structure. Biophys. Chem. 112(2–3):147–151, 2004.

    Article  PubMed  Google Scholar 

  9. Bruder, S. P., A. A. Kurth, M. Shea, W. C. Hayes, N. Jaiswal, and S. Kadiyala. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J. Orthop. Res. 16(2):155–162, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Catelas, I., N. Sese, B. M. Wu, J. C. Dunn, S. Helgerson, and B. Tawil. Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. Tissue Eng. 12(8):2385–2396, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Critser, P. J., S. T. Kreger, S. L. Voytik-Harbin, and M. C. Yoder. Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc. Res. 80(1):23–30, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Davies, N., S. Dobner, D. Bezuidenhout, C. Schmidt, M. Beck, A. H. Zisch, and P. Zilla. The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials 29(26):3531–3538, 2008.

    Article  CAS  PubMed  Google Scholar 

  13. Davis, H. E., S. L. Miller, E. M. Case, and J. K. Leach. Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response. Acta Biomater. 7(2):691–699, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Davis, H. E., B. Y. Binder, P. Schaecher, D. D. Yakoobinsky, A. Bhat, and J. K. Leach. Enhancing osteoconductivity of fibrin gels with apatite-coated polymer microspheres. Tissue Eng. A 19(15–16):1773–1782, 2013.

    Article  CAS  Google Scholar 

  15. Decaris, M. L., and J. K. Leach. Design of experiments approach to engineer cell-secreted matrices for directing osteogenic differentiation. Ann. Biomed. Eng. 39(4):1174–1185, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Decaris, M. L., C. I. Lee, M. C. Yoder, A. F. Tarantal, and J. K. Leach. Influence of the oxygen microenvironment on the proangiogenic potential of human endothelial colony forming cells. Angiogenesis 12(4):303–311, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Deshpande, S. S., K. K. Gallagher, A. Donneys, C. N. Tchanque-Fossuo, D. Sarhaddi, H. Sun, P. H. Krebsbach, and S. R. Buchman. Stem cell therapy remediates reconstruction of the craniofacial skeleton after radiation therapy. Stem Cells Dev. 22(11):1625–1632, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dorresteijn, L. D., A. C. Kappelle, W. Boogerd, W. J. Klokman, A. J. Balm, R. B. Keus, F. E. van Leeuwen, and H. Bartelink. Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J. Clin. Oncol. 20(1):282–288, 2002.

    Article  PubMed  Google Scholar 

  19. Dosier, C. R., Uhrig, B. A., Willett, N. J., Krishnan, L., Li, M. T., Stevens, H. Y., Schwartz, Z., Boyan, B. D., and R. E. Guldberg. Effect of cell origin and timing of delivery for stem cell-based bone tissue engineering using biologically functionalized hydrogels. Tissue Eng. A. 2014. doi:10.1089/ten.TEA.2014.0057.

  20. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  CAS  PubMed  Google Scholar 

  21. Ghajar, C. M., K. S. Blevins, C. C. Hughes, S. C. George, and A. J. Putnam. Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng. 12(10):2875–2888, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60(4):607–612, 2002.

    Article  CAS  PubMed  Google Scholar 

  23. He, J., D. C. Genetos, and J. K. Leach. Osteogenesis and trophic factor secretion are influenced by the composition of hydroxyapatite/poly(lactide-co-glycolide) composite scaffolds. Tissue Eng. A 16(1):127–137, 2010.

    Article  CAS  Google Scholar 

  24. Hoch, A. I., B. Y. Binder, D. C. Genetos, and J. K. Leach. Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. PLoS ONE 7(4):e35579, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hu, W. W., B. B. Ward, Z. Wang, and P. H. Krebsbach. Bone regeneration in defects compromised by radiotherapy. J. Dent. Res. 89(1):77–81, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Jacobsson, M., T. Albrektsson, and I. Turesson. Dynamics of irradiation injury to bone tissue. A vital microscopic investigation. Acta Radiol. Oncol. 24(4):343–350, 1985.

    Article  CAS  PubMed  Google Scholar 

  27. Janmey, P. A., J. P. Winer, and J. W. Weisel. Fibrin gels and their clinical and bioengineering applications. J. R. Soc. Interface 6(30):1–10, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Jose, S., M. L. Hughbanks, B. Y. Binder, G. C. Ingavle, and J. K. Leach. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with glycine-histidine-lysine (GHK)-modified alginate hydrogels. Acta Biomater. 10(5):1955–1964, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kagiwada, H., T. Yashiki, A. Ohshima, M. Tadokoro, N. Nagaya, and H. Ohgushi. Human mesenchymal stem cells as a stable source of VEGF-producing cells. J. Tissue Eng. Regen. Med. 2(4):184–189, 2008.

    Article  CAS  PubMed  Google Scholar 

  30. Kaigler, D., Z. Wang, K. Horger, D. J. Mooney, and P. H. Krebsbach. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J. Bone Miner. Res. 21(5):735–744, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Kanczler, J. M., and R. O. Oreffo. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 15:100–114, 2008.

    CAS  PubMed  Google Scholar 

  32. Kang, K. T., P. Allen, and J. Bischoff. Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re-establish perfusion. Blood 118(25):6718–6721, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Khan, S. N., F. P. Cammisa, Jr., H. S. Sandhu, A. D. Diwan, F. P. Girardi, and J. M. Lane. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 13(1):77–86, 2005.

    PubMed  Google Scholar 

  34. Kniazeva, E., S. Kachgal, and A. J. Putnam. Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng. A 17(7–8):905–914, 2011.

    Article  CAS  Google Scholar 

  35. Lee, K. Y., and D. J. Mooney. Hydrogels for tissue engineering. Chem. Rev. 101(7):1869–1879, 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Leu, A., S. M. Stieger, P. Dayton, K. W. Ferrara, and J. K. Leach. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng. A 15(4):877–885, 2009.

    Article  CAS  Google Scholar 

  37. Man, A. J., H. E. Davis, A. Itoh, J. K. Leach, and P. Bannerman. Neurite outgrowth in fibrin gels is regulated by substrate stiffness. Tissue Eng. Part A 17(23–24):2931–2942, 2011.

    Article  CAS  PubMed  Google Scholar 

  38. McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6(4):483–495, 2004.

    Article  CAS  PubMed  Google Scholar 

  39. Murphy, K. C., and J. K. Leach. A reproducible, high throughput method for fabricating fibrin gels. BMC Res. Notes 5:423, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Nguyen, L. H., N. Annabi, M. Nikkhah, H. Bae, L. Binan, S. Park, Y. Kang, Y. Yang, and A. Khademhosseini. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng. B 18(5):363–382, 2012.

    Article  CAS  Google Scholar 

  41. Nussenbaum, B., R. B. Rutherford, and P. H. Krebsbach. Bone regeneration in cranial defects previously treated with radiation. Laryngoscope 115(7):1170–1177, 2005.

    Article  PubMed  Google Scholar 

  42. Salinas, C. N., and K. S. Anseth. Mesenchymal stem cells for craniofacial tissue regeneration: designing hydrogel delivery vehicles. J. Dent. Res. 88(8):681–692, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sasaki, J. I., T. Matsumoto, and S. Imazato. Oriented bone formation using biomimetic fibrin hydrogels with three-dimensional patterned bone matrices. J. Biomed. Mater. Res. A 2014. doi:10.1002/jbm.a.35212.

    PubMed  Google Scholar 

  44. Seiler, 3rd, J. G., and J. Johnson. Iliac crest autogenous bone grafting: donor site complications. J. South. Orthop. Assoc. 9(2):91–97, 2000.

    PubMed  Google Scholar 

  45. Shih, Y. R., Y. Hwang, A. Phadke, H. Kang, N. S. Hwang, E. J. Caro, S. Nguyen, M. Siu, E. A. Theodorakis, N. C. Gianneschi, et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc. Natl. Acad. Sci. USA 111(3):990–995, 2014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Silber, J. S., D. G. Anderson, S. D. Daffner, B. T. Brislin, J. M. Leland, A. S. Hilibrand, A. R. Vaccaro, and T. J. Albert. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28(2):134–139, 2003.

    Article  PubMed  Google Scholar 

  47. Stegemann, J. P., S. Verrier, F. Gebhard, M. W. Laschke, I. Martin, H. Simpson, and T. Miclau. Cell therapy for bone repair: narrowing the gap between vision and practice. Eur. Cell Mater. 27:1–4, 2014.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Umoh, J. U., A. V. Sampaio, I. Welch, V. Pitelka, H. A. Goldberg, T. M. Underhill, and D. W. Holdsworth. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model. Phys. Med. Biol. 54(7):2147–2161, 2009.

    Article  PubMed  Google Scholar 

  49. Xue, R., J. Y. Li, Y. Yeh, L. Yang, and S. Chien. Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation. J. Orthop. Res. 31(9):1360–1365, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Yoder, M. C., L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh, F. Li, R. Krasich, C. J. Temm, J. T. Prchal, and D. A. Ingram. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109(5):1801–1809, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants R03-DE021704 and R21-AG036963 and the AO Foundation (C10-39L) to JKL. This project was also supported by the California Institute for Regenerative Medicine UC Davis Stem Cell Training Program (CIRM T1-00006, CIRM TG2-01163) to BYB. We appreciate the assistance of Michael Kent, DVM, PhD, for his help in irradiating the animals and Mervin Yoder, M.D., for providing endothelial colony forming cells.

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kent Leach.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, K.C., Hughbanks, M.L., Binder, B.Y.K. et al. Engineered Fibrin Gels for Parallel Stimulation of Mesenchymal Stem Cell Proangiogenic and Osteogenic Potential. Ann Biomed Eng 43, 2010–2021 (2015). https://doi.org/10.1007/s10439-014-1227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1227-x

Keywords

Navigation