Skip to main content

Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury

An Erratum to this article was published on 30 October 2015

Abstract

This preliminary study investigated whether direct measurement of head rotation improves prediction of mild traumatic brain injury (mTBI). Although many studies have implicated rotation as a primary cause of mTBI, regulatory safety standards use 3 degree-of-freedom (3DOF) translation-only kinematic criteria to predict injury. Direct 6DOF measurements of human head rotation (3DOF) and translation (3DOF) have not been previously available to examine whether additional DOFs improve injury prediction. We measured head impacts in American football, boxing, and mixed martial arts using 6DOF instrumented mouthguards, and predicted clinician-diagnosed injury using 12 existing kinematic criteria and 6 existing brain finite element (FE) criteria. Among 513 measured impacts were the first two 6DOF measurements of clinically diagnosed mTBI. For this dataset, 6DOF criteria were the most predictive of injury, more than 3DOF translation-only and 3DOF rotation-only criteria. Peak principal strain in the corpus callosum, a 6DOF FE criteria, was the strongest predictor, followed by two criteria that included rotation measurements, peak rotational acceleration magnitude and Head Impact Power (HIP). These results suggest head rotation measurements may improve injury prediction. However, more 6DOF data is needed to confirm this evaluation of existing injury criteria, and to develop new criteria that considers directional sensitivity to injury.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Abrahams, S., S. Mc Fie, J. Patricios, M. Posthumus, and A. V. September. Risk factors for sports concussion: an evidence-based systematic review. Br. J. Sports Med. 2013. doi:10.1136/bjsports-2013-092734.

  2. 2.

    Allison, M. A., Y. S. Kang, J. H. Bolte, M. R. Maltese, and K. B. Arbogast. Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med. Sci. Sports Exerc. 46(1):115–123, 2014.

    Article  PubMed  Google Scholar 

  3. 3.

    Arbogast, K. B., and S. S. Margulies. Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31(9):801–807, 1998.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Arenth, P. M., K. C. Russell, J. M. Scanlon, L. J. Kessler, and J. H. Ricker. Corpus callosum integrity and neuropsychological performance after traumatic brain injury: a diffusion tensor imaging study. J. Head Trauma Rehabil. 29(2):E1–E10, 2014.

  5. 5.

    Bartsch, A., and S. Samorezov. A new technology to accurately measure head impact in athletes and soldiers. Environmental Monitoring 1:2, 2013.

    Google Scholar 

  6. 6.

    Bayly, P. V., T. Cohen, E. Leister, D. Ajo, E. Leuthhardt, and G. Genin. Deformation of the human brain induced by mild acceleration. J. Neurotrauma 22(8):845–856, 2005.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  7. 7.

    Beckwith, J. G., J. J. Chu, and R. M. Greenwald. Validation of a noninvasive system for measuring head acceleration for use during boxing competition. J. Appl. Biomech. 23(3):238–244, 2007.

    PubMed  Google Scholar 

  8. 8.

    Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 40(1):237–248, 2012.

    PubMed Central  Article  PubMed  Google Scholar 

  9. 9.

    Beckwith, J. G., R. M. Greenwald, J. J. Chu, J. J. Crisco, S. Rowson, S. M. Duma, S. P. Broglio, T. W. Mcallister, K. M. Guskiewicz, J. P. Mihalik, S. Anderson, B. Schnebel, and P. G. Brolinson. Timing of concussion diagnosis is related to head impact exposure prior to injury. Med. Sci. Sports Exerc. 45(4):747–754, 2013.

    PubMed Central  Article  PubMed  Google Scholar 

  10. 10.

    Bianchi, A., B. Bhanu, and A. Obenaus. Dynamic low-level context for the detection of mild traumatic brain injury. IEEE Trans. Biomed. Eng. 2014. doi:10.1109/TBME.2014.2342653.

  11. 11.

    Browne, K. D., X. Chen, D. F. Meaney, and D. H. Smith. Mild traumatic brain injury and diffuse axonal injury in swine. J. Neurotrauma 28(9):1747–1755, 2011.

    PubMed Central  Article  PubMed  Google Scholar 

  12. 12.

    Caccese, V., J. Ferguson, J. Lloyd, M. Edgecomb, M. Seidi, and M. Hajiaghamemar. Response of an impact test apparatus for fall protective headgear testing using a Hybrid-III head/neck assembly. Exp. Tech. 2014. doi:10.1111/ext.12079.

  13. 13.

    Camarillo, D. B., P. B. Shull, J. Mattson, R. Shultz, and D. Garza. An instrumented mouthguard for measuring linear and angular head impact kinematics in American football. Ann. Biomed. Eng. 41(9):1939–1949, 2013.

    PubMed Central  Article  PubMed  Google Scholar 

  14. 14.

    Cao, C., R. L. Tutwiler, and S. Slobounov. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE Trans. Neural Syst. Rehabil. Eng. 16(4):327–335, 2008.

    Article  PubMed  Google Scholar 

  15. 15.

    Cassidy, J. D., L. J. Carroll, P. M. Peloso, J. Borg, H. von Holst, L. Holm, J. Kraus, and V. Coronado. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 43(Suppl):28–60, 2004.

    Article  PubMed  Google Scholar 

  16. 16.

    Coats, B., S. A. Eucker, S. Sullivan, and S. S. Margulies. Finite element model predictions of intracranial hemorrhage from non-impact, rapid head rotations in the piglet. Int. J. Dev. Neurosci. 30(3):191–200, 2012.

    PubMed Central  Article  PubMed  Google Scholar 

  17. 17.

    DeKosky, S. T., K. Blennow, M. D. Ikonomovic, and S. Gandy. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol. 9(4):192–200, 2013.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. 18.

    Denny-Brown, D. E., and W. R. Russell. Experimental cerebral concussion. Brain 64(2–3):93–164, 1941.

    Article  Google Scholar 

  19. 19.

    Duma, S. M., S. J. Manoogian, W. R. Bussone, P. G. Brolinson, M. W. Goforth, J. J. Donnenwerth, R. M. Greenwald, J. J. Chu, and J. J. Crisco. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sports Med. 15(1):3–8, 2005.

    Article  Google Scholar 

  20. 20.

    Eucker, S. A., C. Smith, J. Ralston, S. H. Friess, and S. S. Margulies. Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp. Neurol. 227(1):79–88, 2011.

    PubMed Central  Article  PubMed  Google Scholar 

  21. 21.

    Federal Motor Vehicle Safety Standards (FMVSS). Part 571, Standard No. 202a–Head restraints. pp. 531–545, 2014.

  22. 22.

    Feng, Y., R. J. Okamoto, R. Namani, G. M. Genin, and P. V. Bayly. Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23:117–132, 2013.

    PubMed Central  Article  PubMed  Google Scholar 

  23. 23.

    Gadd, C. Use of a weighted impulse criterion for estimating injury hazard. Proceedings of the 10th Stapp Car Crash Conference, 1966, pp. 164–174.

  24. 24.

    Gazzaniga, M., R. B. Irvy, and G. R. Mangun. Cognitive Neuroscience The Biology of the Mind. New York: W. W. Norton & Company, 1998.

    Google Scholar 

  25. 25.

    Gennarelli, T. A. Mechanisms of brain injury. J. Emerg. Med. 11:5–11, 1992.

    Google Scholar 

  26. 26.

    Gennarelli, T. A., L. E. Thibault, J. H. Adams, D. I. Graham, C. J. Thompson, and R. P. Marcincin. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12(6):564–574, 1982.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Giordano, C., and S. Kleiven. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue. J. R. Soc. Interface 11:20130914, 2013.

    Article  PubMed  Google Scholar 

  28. 28.

    Goldstein, L. E., A. M. Fisher, C. A. Tagge, X.-L. Zhang, L. Velisek, J. A. Sullivan, C. Upreti, J. M. Kracht, M. Ericsson, M. W. Wojnarowicz, C. J. Goletiani, G. M. Maglakelidze, N. Casey, J. A. Moncaster, O. Minaeva, R. D. Moir, C. J. Nowinski, R. A. Stern, R. C. Cantu, J. Geiling, J. K. Blusztajn, B. L. Wolozin, T. Ikezu, T. D. Stein, A. E. Budson, N. W. Kowall, D. Chargin, A. Sharon, S. Saman, G. F. Hall, W. C. Moss, R. O. Cleveland, R. E. Tanzi, P. K. Stanton, and A. C. McKee. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4(134):134–160, 2012.

    Article  Google Scholar 

  29. 29.

    Greenwald, R., J. Gwin, J. Chu, and J. Crisco. Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62(4):789–798, 2008.

    PubMed Central  Article  PubMed  Google Scholar 

  30. 30.

    Gurdjian, E. S., H. R. Lissner, F. R. Latimer, B. F. Haddad, and J. E. Webster. Quantitative determination of acceleration and intracranial pressure in experimental head injury; preliminary report. Neurology 3(6):417–423, 1953.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Guskiewicz, K. M., M. McCrea, S. W. Marshall, R. C. Cantu, C. Randolph, W. Barr, J. A. Onate, and J. P. Kelly. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 290(19):2549–2555, 2003.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Hardy, W. N., C. D. Foster, M. J. Mason, K. H. Yang, A. I. King, and S. Tashman. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar x-ray. Stapp Car Crash J. 45:337–368, 2001.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hardy, W. N., M. J. Mason, C. D. Foster, C. S. Shah, J. M. Kopacz, H. Yang, A. I. King, J. Bishop, and M. Bey. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 51:17–80, 2008.

    Google Scholar 

  34. 34.

    Harmon, K. G., J. A. Drezner, M. Gammons, K. M. Guskiewicz, M. Halstead, S. A. Herring, J. S. Kutcher, A. Pana, M. Putukian, and W. O. Roberts. American Medical Society for Sports Medicine position statement: concussion in sport. Br. J. Sports Med. 47(1):15–26, 2013.

    Article  PubMed  Google Scholar 

  35. 35.

    Higgins, M., P. D. Halstead, L. Snyder-Mackler, and D. Barlow. Measurement of impact acceleration: mouthpiece accelerometer versus helmet accelerometer. J. Athl. Train. 42(1):5–10, 2007.

    PubMed Central  PubMed  Google Scholar 

  36. 36.

    Hoge, C. W., D. McGurk, J. L. Thomas, A. L. Cox, C. C. Engel, and C. A. Castro. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N. Engl. J. Med. 358(5):453–463, 2008.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Holbourn, A. H. S. Mechanics of head injuries. Lancet 242(6267):438–441, 1943.

    Article  Google Scholar 

  38. 38.

    Hosmer, D. W., S. Lemeshow, and R. X. Sturdivant. Applied Logistic Regression (3rd ed.). Hoboken, NJ: Wiley, 2013.

    Book  Google Scholar 

  39. 39.

    Jadischke, R., D. C. Viano, N. Dau, A. I. King, and J. McCarthy. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets. J. Biomech. 46(13):2310–2315, 2013.

    Article  PubMed  Google Scholar 

  40. 40.

    Ji, S., H. Ghadyani, R. P. Bolander, J. G. Beckwith, J. C. Ford, T. W. McAllister, L. A. Flashman, K. D. Paulsen, K. Ernstrom, S. Jain, R. Raman, L. Zhang, and R. M. Greenwald. Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann. Biomed. Eng. 42(1):11–24, 2014.

    PubMed Central  Article  PubMed  Google Scholar 

  41. 41.

    Kang, Y., K. Moorhouse, and J. H. Bolte. Measurement of six degrees of freedom head kinematics in impact conditions employing six accelerometers and three angular rate sensors (6aω configuration). J. Biomech. Eng. 133(11):111007, 2011.

    Article  PubMed  Google Scholar 

  42. 42.

    Kimpara, H., and M. Iwamoto. Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann. Biomed. Eng. 40(1):114–126, 2012.

    Article  PubMed  Google Scholar 

  43. 43.

    Kimpara, H., Y. Nakahira, and M. Iwamoto. Head injury prediction methods based on 6 degree of freedom head acceleration measurements during impact. Int. J. Automot. Eng. 2:13–19, 2011.

    Google Scholar 

  44. 44.

    King, A. I., K. H. Yang, L. Zhang, W. Hardy, and D. C. Viano. Is head injury caused by linear or angular acceleration? Proceedings of the 2003 International IRCOBI Conference on the Biomechanics of Impact, pp. 1–12, 2003.

  45. 45.

    Kleinberger, M., E. Sun, R. Eppinger, S. Kuppa, and R. Saul. Head Injury Criteria. Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems, Washington, D.C.: National Highway Traffic Safety Administration, 1998, pp. 12–17.

    Google Scholar 

  46. 46.

    Kleiven, S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthines 11(1):65–79, 2006.

    Article  Google Scholar 

  47. 47.

    Kleiven, S. Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J. 51:81–114, 2007.

    PubMed  Google Scholar 

  48. 48.

    Margulies, S. S., and L. E. Thubault. A proposed tolerance criterion for diffuse axonal injury in man. J. Biomech. 25(8):917–923, 1992.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Marjoux, D., D. Baumgartner, C. Deck, and R. Willinger. Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 40(3):1135–1148, 2008.

    Article  PubMed  Google Scholar 

  50. 50.

    Moon, D. W., C. W. Beedle, and C. R. Kovacic. Peak head acceleration of athletes during competition—football. Med. Sci. Sports 3(1):44–50, 1971.

    CAS  PubMed  Google Scholar 

  51. 51.

    National Operating Committee on Standards for Athletic Equipment (NOCSAE). Paper No. ND001-11m12. Standard Test Method and Equipment Used in Evaluating the Performance Characteristics of Protective Headgear/Equipment. 2012.

  52. 52.

    Naunheim, R. S., P. V. Bayly, J. Standeven, J. S. Neubauer, L. M. Lewis, and G. M. Genin. Linear and angular head accelerations during heading of a soccer ball. Med. Sci. Sports Exerc. 35(8):1406–1412, 2003.

    Article  PubMed  Google Scholar 

  53. 53.

    Naunheim, R. S., J. Standeven, C. Richter, and L. M. Lewis. Comparison of impact data in hockey, football, and soccer. J. Trauma 48(5):938–941, 2000.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Newman, J. A generalized acceleration model for brain injury threshold (GAMBIT). Proceedings of the 1986 International IRCOBI Conference on the Biomechanics of Impact, 1986, pp. 121–131.

  55. 55.

    Newman, J. A., C. Barr, M. Beusenberg, E. Fournier, N. Shewchenko, E. Welbourne, and C. Withnall. A new biomechanical assessment of mild traumatic brain injury. Part 2: Results and conclusions. Proceedings of the 2000 International IRCOBI Conference on the Biomechanics of Impact, 2000, pp. 223–233.

  56. 56.

    Newman, J. A., M. C. Beusenberg, N. Shewchenko, C. Withnall, and E. Fournier. Verification of biomechanical methods employed in a comprehensive study of mild traumatic brain injury and the effectiveness of American football helmets. J. Biomech. 38(7):1469–1481, 2005.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Newman, J., N. Shewchenko, and E. Welbourne. A proposed new biomechanical head injury assessment function-the maximum power index. Stapp Car Crash J. 44:215–247, 2000.

    CAS  PubMed  Google Scholar 

  58. 58.

    Newman, J. A., N. Shewchenko, and E. Welbourne. A proposed new biomechanical head injury assessment function—The Maximum Power Index. Stapp Car Crash J. 44(724):362, 2000.

    Google Scholar 

  59. 59.

    Ommaya, A. K., F. Faas, and P. Yarnell. Whiplash injury and brain damage: an experimental study. JAMA 204(4):285–289, 1968.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Ommaya, A. K., and T. A. Gennarelli. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 97(4):633–654, 1974.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Ommaya, A., and A. Hirsch. Tolerances for cerebral concussion from head impact and whiplash in primates. J. Biomech. 4(1):13–21, 1971.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Ommaya, A., A. Hirsch, E. Flamm, and R. Mahone. Cerebral concussion in the monkey: an experimental model. Science 153(3732):211–212, 1966.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Pellman, E. J., D. C. Viano, A. M. Tucker, and I. R. Casson. Concussion in professional football, Part 1: reconstruction of game impacts and injuries. Neurosurgery 53(4):799–812, 2003.

    PubMed  Google Scholar 

  64. 64.

    Pincemaille, Y., X. Trosseille, P. Mack, C. Tarriere, F. Breton, B. Renault, U. R. A. U. D. Recherche, and C. Pathologie. Some new data related to human tolerance obtained from volunteer boxers. Proceedings of the 33rd Stapp Car Crash Conference, SAE Paper No. 892435, 1989, pp. 177–190.

  65. 65.

    Prichep, L., and A. Jacquin. Classification of traumatic brain injury severity using informed data reduction in a series of binary classifier algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 20(6):806–822, 2012.

  66. 66.

    Qian, H., Y. Mao, W. Xiang, and Z. Wang. Home environment fall detection system based on a cascaded multi-SVM classifier. Proceedings of the 10th IEEE Conference on Control, Automation, Robotics and Vision, 2008, pp. 17–20.

  67. 67.

    Reid, S. E., H. M. Epstein, T. J. O’Dea, and M. W. Louis. Head protection in football. J. Sports Med. 2(2):86–92, 1974.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Roth, T. L., D. Nayak, T. Atanasijevic, A. P. Koretsky, L. L. Latour, and D. B. McGavern. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505(7482):223–228, 2014.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  69. 69.

    Rowson, S., J. G. Beckwith, J. J. Chu, D. S. Leonard, R. M. Greenwald, and S. M. Duma. A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27(1):8–14, 2011.

    PubMed  Google Scholar 

  70. 70.

    Rowson, S., G. Brolinson, M. Goforth, D. Dietter, and S. M. Duma. Linear and angular head acceleration measurements in collegiate football. J. Biomech. Eng. 131(6):061016, 2009.

    Article  PubMed  Google Scholar 

  71. 71.

    Rowson, S., and S. M. Duma. Development of the STAR evaluation system for football helmets: integrating player head impact exposure and risk of concussion. Ann. Biomed. Eng. 39(8):2130–2140, 2011.

    Article  PubMed  Google Scholar 

  72. 72.

    Rowson, S., S. M. Duma, J. G. Beckwith, J. J. Chu, R. M. Greenwald, J. J. Crisco, P. G. Brolinson, A.-C. Duhaime, T. W. McAllister, and A. C. Maerlender. Rotational head kinematics in football impacts: an injury risk function for concussion. Ann. Biomed. Eng. 40(1):1–13, 2012.

    Article  PubMed  Google Scholar 

  73. 73.

    Smith, D. H., V. E. Johnson, and W. Stewart. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat. Rev. Neurol. 9(4):211–221, 2013.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  74. 74.

    Smith, D. H., M. Nonaka, R. Miller, M. Leoni, X. H. Chen, D. Alsop, and D. F. Meaney. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J. Neurosurg. 93(2):315–322, 2000.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Takhounts, E. G., M. J. Craig, K. Moorhouse, J. Mcfadden, and V. Hasija. Development of brain injury criteria (BrIC). Stapp Car Crash J. 57:1–24, 2013.

    Google Scholar 

  76. 76.

    Takhounts, E. G., S. A. Ridella, V. Hasija, R. E. Tannous, J. Q. Campbell, D. Malone, K. Danelson, J. Stitzel, S. Rowson, and S. Duma. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 52:1–31, 2008.

    PubMed  Google Scholar 

  77. 77.

    Ungerleider, L. G., and M. Mishkin. Two cortical visual systems. Analysis of Visual Behavior, Cambridge, MA: MIT Press, 1982, pp. 549–586.

    Google Scholar 

  78. 78.

    Versace, J. A review of the Severity Index. Proceedings of the 15th Stapp Car Crash Conference, SAE Paper No. 710881, 1971, pp. 771–796.

  79. 79.

    Ward, C., M. Chan, and A. Nahum. Intracranial pressure–a brain injury criterion. Stapp Car Crash J. 801304:163–185, 1980.

    Google Scholar 

  80. 80.

    Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2):226, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Stanford Department of Athletics (Palo Alto, CA) for enabling this research, notably Scott Anderson, Director of Athletic Training, and Mike Gleeson, Video Director. We thank Kevin Bui and Bradley Hammoor for work in processing the event video, Joseph Schooler for coordinating human subject protocols, and Maria Malone for device manufacturing and deployment. We thank X2 Biosystems (Seattle, WA) for early device prototypes and continual support. We thank Roy Englebrecht Promotions (Newport Beach, CA) and B Street Boxing (San Mateo, CA) for help with subject recruitment. The study was supported by the National Institutes of Health (NIH) National Institute of Biomedical Imaging and Bioengineering (NIBIB) 3R21EB01761101S1, David and Lucile Packard Foundation 38454, Child Health Research Institute of Stanford University, and NIH UL1 TR000093 for biostatistics consultation.

Conflict of Interest

None of the authors had any conflict of interest regarding this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David B. Camarillo.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Electronic supplementary material

10439_2014_1212_MOESM1_ESM.pdf

Supplemental Fig. 1. Distribution of 6DOF head impact measurements by sport. Kinematics histograms were plotted for the non-injury American football, boxing, and mixed martial arts head impacts. The distributions of each sport were similar for all measures. In the left-right and coronal directions, the LOC injury was very high percentile. For the other directions, the LOC injury was less distinguishable from non-injury. The self-reported injury was generally less distinguishable than the LOC injury. (PDF 22 kb)

A

Supplemental Fig. 2. Distribution of head impact acceleration directions. Rotational histograms of head impacts are plotted in each plane for maximum translational acceleration (), and maximum rotational acceleration (B). Head impacts occurred over a broad spectrum of directions. In each plane, the injuries lie in directions where only a small percentage of noninjuries occurred, supporting the use of multidimensional analysis to helps distinguish injury from non-injury. (PDF 33 kb)

10439_2014_1212_MOESM3_ESM.mov

Supplemental Movie 1. Video of American football mTBI impact. Video of the head impact was recorded at 40 frames s−1 and is compared to an animation of the device recordings. Time synchronized measurements of translational acceleration and angular acceleration are shown below. (MOV 9403 kb)

10439_2014_1212_MOESM4_ESM.mov

Supplemental Movie 2. Video of a mixed martial arts non-injury head impact. Video of the head impact was recorded at 1300 frames s−1 and is compared to an animation of the device recordings. Time synchronized measurements of translational acceleration and angular acceleration are shown below. (MOV 9280 kb)

10439_2014_1212_MOESM5_ESM.mov

Supplemental Movie 3. Simulation of brain during loss of consciousness (LOC). A finite element simulation of an LOC head impact (Methods) reveals maximum tensile strain of 30% occurs at t = 30 ms in the corpus callosum and brainstem. Damage to these regions is thought to affect perception and consciousness. Sagittal and coronal views of the brain are provided in the video. (MOV 20295 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernandez, F., Wu, L.C., Yip, M.C. et al. Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury. Ann Biomed Eng 43, 1918–1934 (2015). https://doi.org/10.1007/s10439-014-1212-4

Download citation

Keywords

  • Concussion
  • Mild traumatic brain injury (mTBI)
  • Instrumented mouthguard
  • Six degree-of-freedom (6DOF) kinematics
  • Finite element model
  • Brain strain